13 research outputs found

    Identifying the DEAD: Development and Validation of a Patient-Level Model to Predict Death Status in Population-Level Claims Data

    Get PDF
    Introduction US claims data contain medical data on large heterogeneous populations and are excellent sources for medical research. Some claims data do not contain complete death records, limiting their use for mortality or mortality-related studies. A model to predict whether a patient died at the end of the follow-up time (referred to as the end of observation) is needed to enable mortality-related studies. Objective The objective of this study was to develop a patient-level model to predict whether the end of observation was due to death in US claims data. Methods We used a claims dataset with full death records, Optum© De-Identifed Clinformatics® Data-Mart-Database—Date of Death mapped to the Observational Medical Outcome Partnership common data model, to develop a model that classifes the end of observations into death or non-death. A regularized logistic regression was trained using 88,514 predictors (recorded within the prior 365 or 30 days) and externally validated by applying the model to three US claims datasets. Results Approximately 25 in 1000 end of observations in Optum are due to death. The Discriminating End of observation into Alive and Dead (DEAD) model obtained an area under the receiver operating characteristic curve of 0.986. When defning death as a predicted risk of>0.5, only 2% of the end of observations were predicted to be due to death and the model obtained a sensitivity of 62% and a positive predictive value of 74.8%. The external validation showed the model was transportable, with area under the receiver operating characteristic curves ranging between 0.951 and 0.995 across the US claims databases. Conclusions US claims data often lack complete death records. The DEAD model can be used to impute death at various sensitivity, specifcity, or positive predictive values depending on the use of the model. The DEAD model can be readily applied to any observational healthcare database mapped to the Observational Medical Outcome Partnership common data model and is available from https://github.com/OHDSI/StudyProtocolSandbox/tree/master/DeadModel

    Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data

    Get PDF
    Objective: To develop a conceptual prediction model framework containing standardized steps and describe the corresponding open-source software developed to consistently implement the framework across computational environments and observational healthcare databases to enable model sharing and reproducibility. Methods: Based on existing best practices we propose a 5 step standardized framework for: (1) transparently defining the problem; (2) selecting suitable datasets; (3) constructing variables from the observational data; (4) learning the predictive model; and (5) validating the model performance. We implemented this framework as open-source software utilizing the Observational Medical Outcomes Partnership Common Data Model to enable convenient sharing of models and reproduction of model evaluation across multiple observational datasets. The software implementation contains default covariates and classifiers but the framework enables customization and extension. Results: As a proof-of-concept, demonstrating the transparency and ease of model dissemination using the software, we developed prediction models for 21 different outcomes within a target population of people suffering from depression across 4 observational databases. All 84 models are available in an accessible online repository to be implemented by anyone with access to an observational database in the Common DataModel format. Conclusions: The proof-of-concept study illustrates the framework's ability to develop reproducible models that can be readily shared and offers the potential to perform extensive external validation of models, and improve their likelihood of clinical uptake. In future work the framework will be applied to perform an "all-by-all" prediction analysis to assess the observational data prediction domain across numerous target populations, outcomes and time, and risk settings

    Observation of Scaling Violations in Scaled Momentum Distributions at HERA

    Get PDF
    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of xx and Q2Q^2 using the ZEUS detector. The evolution of the scaled momentum, xpx_p, with Q2,Q^2, in the range 10 to 1280 GeV2GeV^2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2Q^2.Comment: 21 pages including 4 figures, to be published in Physics Letters B. Two references adde

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    The Sample Analysis at Mars Investigation and Instrument Suite

    Full text link

    Does design matter? systematic evaluation of the impact of analytical choices on effect estimates in observational studies

    No full text
    Background: Clinical studies that use observational databases, such as administrative claims and electronic health records, to evaluate the effects of medical products have become commonplace. These studies begin by selecting a particular study design, such as a case control, cohort, or self-controlled design, and different authors can and do choose different designs for the same clinical question. Furthermore, published papers invariably report the study design but do not discuss the rationale for the specific choice. Studies of the same clinical question with different designs, however, can generate different results, sometimes with strikingly different implications. Even within a specific study design, authors make many different analytic choices and these too can profoundly impact results. In this paper, we systematically study heterogeneity due to the type of study design and due to analytic choices within study design. Methods and findings: We conducted our analysis in 10 observational healthcare databases but mostly present our results in the context of the GE Centricity EMR database, an electronic health record database containing data for 11.2 million lives. We considered the impact of three different study design choices on estimates of associations between bisphosphonates and four particular health outcomes for which there is no evidence of an association. We show that applying alternative study designs can yield discrepant results, in terms of direction and significance of association. We also highlight that while traditional univariate sensitivity analysis may not show substantial variation, systematic assessment of all analytical choices within a study design can yield inconsistent results ranging from statistically significant decreased risk to statistically significant increased risk. Our findings show that clinical studies using observational databases can be sensitive both to study design choices and to specific analytic choices within study design. Conclusion: More attention is needed to consider how design choices may be impacting results and, when possible, investigators should examine a wide array of possible choices to confirm that significant findings are consistently identified

    Interpreting observational studies: Why empirical calibration is needed to correct p-values

    Get PDF
    Often the literature makes assertions of medical product effects on the basis of ' p<0.05'. The underlying premise is that at this threshold, there is only a 5% probability that the observed effect would be seen by chance when in reality there is no effect. In observational studies, much more than in randomized trials, bias and confounding may undermine this premise. To test this premise, we selected three exemplar drug safety studies from literature, representing a case-control, a cohort, and a self-controlled case series design. We attempted to replicate these studies as best we could for the drugs studied in the original articles. Next, we applied the same three designs to sets of negative controls: drugs that are not believed to cause the outcome of interest. We observed how often p<0.05 when the null hypothesis is true, and we fitted distributions to the effect estimates. Using these distributions, we compute calibrated p-values that reflect the probability of observing the effect estimate under the null hypothesis, taking both random and systematic error into account. An automated analysis of scientific literature was performed to evaluate the potential impact of such a calibration. Our experiment provides evidence that the majority of observational studies would declare statistical significance when no effect is present. Empirical calibration was found to reduce spurious results to the desired 5% level. Applying these adjustments to literature suggests that at least 54% of findings with p<0.05 are not actually statistically significant and should be reevaluated

    Accuracy of an automated knowledge base for identifying drug adverse reactions

    No full text
    Introduction Drug safety researchers seek to know the degree of certainty with which a particular drug is associated with an adverse drug reaction. There are different sources of information used in pharmacovigilance to identify, evaluate, and disseminate medical product safety evidence including spontaneous reports, published peer-reviewed literature, and product labels. Automated data processing and classification using these evidence sources can greatly reduce the manual curation currently required to develop reference sets of positive and negative controls (i.e. drugs that cause adverse drug events and those that do not) to be used in drug safety research. Methods In this paper we explore a method for automatically aggregating disparate sources of information together into a single repository, developing a predictive model to classify drug-adverse event relationships, and applying those predictions to a real world problem of identifying negative controls for statistical method calibration. Results Our results showed high predictive accuracy for the models combining all available evidence, with an area under the receiver-operator curve of â©ľ0.92 when tested on three manually generated lists of drugs and conditions that are known to either have or not have an association with an adverse drug event. Conclusions Results from a pilot implementation of the method suggests that it is feasible to develop a scalable alternative to the time-and-resource-intensive, manual curation exercise previously applied to develop reference sets of positive and negative controls to be used in drug safety research

    Comparative safety and effectiveness of alendronate versus raloxifene in women with osteoporosis

    Get PDF
    Alendronate and raloxifene are among the most popular anti-osteoporosis medications. However, there is a lack of head-to-head comparative effectiveness studies comparing the two treatments. We conducted a retrospective large-scale multicenter study encompassing over 300 million patients across nine databases encoded in the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). The primary outcome was the incidence of osteoporotic hip fracture, while secondary outcomes were vertebral fracture, atypical femoral fracture (AFF), osteonecrosis of the jaw (ONJ), and esophageal cancer. We used propensity score trimming and stratification based on an expansive propensity score model with all pre-treatment patient characteritistcs. We accounted for unmeasured confounding using negative control outcomes to estimate and adjust for residual systematic bias in each data source. We identified 283,586 alendronate patients and 40,463 raloxifene patients. There were 7.48 hip fracture, 8.18 vertebral fracture, 1.14 AFF, 0.21 esophageal cancer and 0.09 ONJ events per 1,000 person-years in the alendronate cohort and 6.62, 7.36, 0.69, 0.22 and 0.06 events per 1,000 person-years, respectively, in the raloxifene cohort. Alendronate and raloxifene have a similar hip fracture risk (hazard ratio [HR] 1.03, 95% confidence interval [CI] 0.94–1.13), but alendronate users are more likely to have vertebral fractures (HR 1.07, 95% CI 1.01–1.14). Alendronate has higher risk for AFF (HR 1.51, 95% CI 1.23–1.84) but similar risk for esophageal cancer (HR 0.95, 95% CI 0.53–1.70), and ONJ (HR 1.62, 95% CI 0.78–3.34). We demonstrated substantial control of measured confounding by propensity score adjustment, and minimal residual systematic bias through negative control experiments, lending credibility to our effect estimates. Raloxifene is as effective as alendronate and may remain an option in the prevention of osteoporotic fracture
    corecore