3,167 research outputs found

    An Examination of Sport Fans’ Perceptions of the Impact of the Legalization of Sport Wagering on Their Fan Experience

    Full text link
    Over the years, professional and collegiate organizations have fought attempts to increase the legalization of sport wagering. One argument presented by those in opposition is that increased legalization would negatively alter the manner in which fans and spectators follow, consume, and react to sporting events (Tuohy, 2013). The current research was designed to examine possible changes in fandom by investigating fans’ perceptions of the impact of increasing legalized sport wagering on their fan experience, interest in sport, and sport consumption. Participants (N = 580) completed a questionnaire packet assessing demographics, economic fan motivation, fandom, and perceptions of the impact of increased access to legalized sport gambling. Data and analyses indicated that expected impacts were small and generally positive (e.g., a modest increase in interest in sport and consumption) and that these effects were greatest among groups historically active in sport gambling (e.g., persons higher in economic motivation and sport fandom)

    Hypoxia-Inducible Factor-1α Restricts the Anabolic Actions of Parathyroid Hormone

    Get PDF
    The hypoxia inducible factors (Hifs) are evolutionarily conserved transcriptional factors that control homeostatic responses to low oxygen. In developing bone, Hif-1 generated signals induce angiogenesis necessary for osteoblast specification, but in mature bone, loss of Hif-1 in osteoblasts resulted in a more rapid accumulation of bone. These findings suggested that Hif-1 exerts distinct developmental functions and acts as a negative regulator of bone formation. To investigate the function of Hif-1α in osteoanabolic signaling, we assessed the effect of Hif-1α loss-of-function on bone formation in response to intermittent parathyroid hormone (PTH). Mice lacking Hif-1α in osteoblasts and osteocytes form more bone in response to PTH, likely through a larger increase in osteoblast activity and increased sensitivity to the hormone. Consistent with this effect, exposure of primary mouse osteoblasts to PTH resulted in the rapid induction of Hif-1α protein levels via a post-transcriptional mechanism. The enhanced anabolic response appears to result from the removal of Hif-1α-mediated suppression of β-catenin transcriptional activity. Together, these data indicate that Hif-1α functions in the mature skeleton to restrict osteoanabolic signaling. The availability of pharmacological agents that reduce Hif-1α function suggests the value in further exploration of this pathway to optimize the therapeutic benefits of PTH

    L30A Mutation of Phospholemman Mimics Effects of Cardiac Glycosides in Isolated Cardiomyocytes

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Biochemistry, © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/acs.biochem.6b00633To determine if mutations introduced into phospholemman (PLM) could increase the level of PLM–Na,K-ATPase (NKA) binding, we performed scanning mutagenesis of the transmembrane domain of PLM and measured Förster resonance energy transfer (FRET) between each mutant and NKA. We observed an increased level of binding to NKA for several PLM mutants compared to that of the wild type (WT), including L27A, L30A, and I32A. In isolated cardiomyocytes, overexpression of WT PLM increased the amplitude of the Ca2+ transient compared to the GFP control. The Ca2+ transient amplitude was further increased by L30A PLM overexpression. The L30A mutation also delayed Ca2+ extrusion and increased the duration of cardiomyocyte contraction. This mimics aspects of the effect of cardiac glycosides, which are known to increase contractility through inhibition of NKA. No significant differences between WT and L30A PLM-expressing myocytes were observed after treatment with isoproterenol, suggesting that the superinhibitory effects of L30A are reversible with β-adrenergic stimulation. We also observed a decrease in the extent of PLM tetramerization with L30A compared to WT using FRET, suggesting that L30 is an important residue for mediating PLM–PLM binding. Molecular dynamics simulations revealed that the potential energy of the L30A tetramer is greater than that of the WT, and that the transmembrane α helix is distorted by the mutation. The results identify PLM residue L30 as an important determinant of PLM tetramerization and of functional inhibition of NKA by PLM.Peer reviewe

    The Influence of Fantasy Sport Participation on Fans\u27 Perceptions of the Impact of the Legalization of Sport Wagering

    Get PDF
    As states look for ways to increase revenue, many are making attempts to increase the availability of legalized sport wagering. Extending previous work designed to further our understanding of how such actions could potentially impact sport fandom, the current study examined the impact of prior participation in fantasy sports, a pastime sharing much in common with sport gambling. The findings revealed that level of participation in fantasy sports were related to expectations of increased sport wagering, should such opportunities become more available. However, fantasy sport participation was not related to expected changes in sport interest or consumption

    Epstein-Barr virus-specific methylation of human genes in gastric cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epstein-Barr Virus (EBV) is found in 10% of all gastric adenocarcinomas but its role in tumor development and maintenance remains unclear. The objective of this study was to examine EBV-mediated dysregulation of cellular factors implicated in gastric carcinogenesis.</p> <p>Methods</p> <p>Gene expression patterns were examined in EBV-negative and EBV-positive AGS gastric epithelial cells using a low density microarray, reverse transcription PCR, histochemical stains, and methylation-specific DNA sequencing. Expression of PTGS2 (COX2) was measured in AGS cells and in primary gastric adenocarcinoma tissues.</p> <p>Results</p> <p>In array studies, nearly half of the 96 human genes tested, representing 15 different cancer-related signal transduction pathways, were dysregulated after EBV infection. Reverse transcription PCR confirmed significant impact on factors having diverse functions such as cell cycle regulation (<it>IGFBP3</it>, <it>CDKN2A, CCND1, HSP70, ID2, ID4)</it>, DNA repair <it>(BRCA1, TFF1</it>), cell adhesion (<it>ICAM1</it>), inflammation (<it>COX2</it>), and angiogenesis (<it>HIF1A</it>). Demethylation using 5-aza-2'-deoxycytidine reversed the EBV-mediated dysregulation for all 11 genes listed here. For some promoter sequences, CpG island methylation and demethylation occurred in an EBV-specific pattern as shown by bisulfite DNA sequencing. Immunohistochemistry was less sensitive than was western blot for detecting downregulation of COX2 upon EBV infection. Virus-related dysregulation of COX2 levels <it>in vitro </it>was not recapitulated <it>in vivo </it>among naturally infected gastric cancer tissues.</p> <p>Conclusions</p> <p>EBV alters human gene expression in ways that could contribute to the unique pathobiology of virus-associated cancer. Furthermore, the frequency and reversability of methylation-related transcriptional alterations suggest that demethylating agents have therapeutic potential for managing EBV-related carcinoma.</p

    Effect of 1918 PB1-F2 Expression on Influenza A Virus Infection Kinetics

    Get PDF
    Relatively little is known about the viral factors contributing to the lethality of the 1918 pandemic, although its unparalleled virulence was likely due in part to the newly discovered PB1-F2 protein. This protein, while unnecessary for replication, increases apoptosis in monocytes, alters viral polymerase activity in vitro, enhances inflammation and increases secondary pneumonia in vivo. However, the effects the PB1-F2 protein have in vivo remain unclear. To address the mechanisms involved, we intranasally infected groups of mice with either influenza A virus PR8 or a genetically engineered virus that expresses the 1918 PB1-F2 protein on a PR8 background, PR8-PB1-F2(1918). Mice inoculated with PR8 had viral concentrations peaking at 72 hours, while those infected with PR8-PB1-F2(1918) reached peak concentrations earlier, 48 hours. Mice given PR8-PB1-F2(1918) also showed a faster decline in viral loads. We fit a mathematical model to these data to estimate parameter values. The model supports a higher viral production rate per cell and a higher infected cell death rate with the PR8-PB1-F2(1918) virus. We discuss the implications these mechanisms have during an infection with a virus expressing a virulent PB1-F2 on the possibility of a pandemic and on the importance of antiviral treatments

    Performance of chemically modified reduced graphene oxide (CMrGO) in electrodynamic dust shield (EDS) applications

    Full text link
    Electrodynamic Dust Shield (EDS) technology is a dust mitigation strategy that is commonly studied for applications such as photovoltaics or thermal radiators where soiling of the surfaces can reduce performance. The goal of the current work was to test the performance of a patterned nanocomposite EDS system produced through spray-coating and melt infiltration of chemically modified reduced graphene oxide (CMrGO) traces with thermoplastic high-density polyethylene (HDPE). The EDS performance was tested for a dusting of lunar regolith simulant under high vacuum conditions (~10-6 Torr) using both 2-phase and 3-phase configurations. Uncapped (bare) devices showed efficient dust removal at moderate voltages (1000 V) for both 2-phase and 3-phase designs, but the performance of the devices degraded after several sequential tests due to erosion of the traces caused by electric discharges. Further tests carried out while illuminating the dust surface with a UV excimer lamp showed that the EDS voltage needed to reach the maximum cleanliness was reduced by almost 50% for the 2-phase devices (500 V minimum for rough and 1000 V for smooth), while the 3-phase devices were unaffected by the application of UV. Capping the CMrGO traces with low-density polyethylene (LDPE) eliminated breakdown of the materials and device degradation, but larger voltages (3000 V) coupled with UV illumination were required to remove the grains from the capped devices.Comment: 22 pages, 7 figure

    Scribble modulates the MAPK/Fra1 pathway to disrupt luminal and ductal integrity and suppress tumour formation in the mammary gland

    Get PDF
    Polarity coordinates cell movement, differentiation, proliferation and apoptosis to build and maintain complex epithelial tissues such as the mammary gland. Loss of polarity and the deregulation of these processes are critical events in malignant progression but precisely how and at which stage polarity loss impacts on mammary development and tumourigenesis is unclear. Scrib is a core polarity regulator and tumour suppressor gene however to date our understanding of Scrib function in the mammary gland has been limited to cell culture and transplantation studies of cell lines. Utilizing a conditional mouse model of Scrib loss we report for the first time that Scrib is essential for mammary duct morphogenesis, mammary progenitor cell fate and maintenance, and we demonstrate a critical and specific role for Scribble in the control of the early steps of breast cancer progression. In particular, Scrib-deficiency significantly induced Fra1 expression and basal progenitor clonogenicity, which resulted in fully penetrant ductal hyperplasia characterized by high cell turnover, MAPK hyperactivity, frank polarity loss with mixing of apical and basolateral membrane constituents and expansion of atypical luminal cells. We also show for the first time a role for Scribble in mammalian spindle orientation with the onset of mammary hyperplasia being associated with aberrant luminal cell spindle orientation and a failure to apoptose during the final stage of duct tubulogenesis. Restoring MAPK/Fra1 to baseline levels prevented Scrib-hyperplasia, whereas persistent Scrib deficiency induced alveolar hyperplasia and increased the incidence, onset and grade of mammary tumours. These findings, based on a definitive genetic mouse model provide fundamental insights into mammary duct maturation and homeostasis and reveal that Scrib loss activates a MAPK/Fra1 pathway that alters mammary progenitor activity to drive premalignancy and accelerate tumour progression
    corecore