87 research outputs found

    Metabolic changes of salicylic acid-elicited Catharanthus roseus cell suspension cultures monitored by NMR-based metabolomics

    Get PDF
    The effect of salicylic acid (SA) on the metabolic profile of Catharanthus roseus suspension cells throughout a time course (0, 6, 12, 24, 48 and 72 h after treatment) was investigated using NMR spectroscopy and multivariate data analysis. When compared to control cell lines, SA-treated cells showed a high level of sugars (glucose and sucrose) up to 48 h after treatment, followed by a dynamic change in amino acids, phenylpropanoids, and tryptamine. Additionally, one compound—2,5-dihydroxybenzoic-5-O-glucoside—was detected solely in SA-treated cells

    Large Scale Gene Expression Profiles of Regenerating Inner Ear Sensory Epithelia

    Get PDF
    Loss of inner ear sensory hair cells (HC) is a leading cause of human hearing loss and balance disorders. Unlike mammals, many lower vertebrates can regenerate these cells. We used cross-species microarrays to examine this process in the avian inner ear. Specifically, changes in expression of over 1700 transcription factor (TF) genes were investigated in hair cells of auditory and vestibular organs following treatment with two different damaging agents and regeneration in vitro. Multiple components of seven distinct known signaling pathways were clearly identifiable: TGFβ, PAX, NOTCH, WNT, NFKappaB, INSULIN/IGF1 and AP1. Numerous components of apoptotic and cell cycle control pathways were differentially expressed, including p27KIP and TFs that regulate its expression. A comparison of expression trends across tissues and treatments revealed identical patterns of expression that occurred at identical times during regenerative proliferation. Network analysis of the patterns of gene expression in this large dataset also revealed the additional presence of many components (and possible network interactions) of estrogen receptor signaling, circadian rhythm genes and parts of the polycomb complex (among others). Equal numbers of differentially expressed genes were identified that have not yet been placed into any known pathway. Specific time points and tissues also exhibited interesting differences: For example, 45 zinc finger genes were specifically up-regulated at later stages of cochlear regeneration. These results are the first of their kind and should provide the starting point for more detailed investigations of the role of these many pathways in HC recovery, and for a description of their possible interactions

    Gene Expression Analysis of Forskolin Treated Basilar Papillae Identifies MicroRNA181a as a Mediator of Proliferation

    Get PDF
    Auditory hair cells spontaneously regenerate following injury in birds but not mammals. A better understanding of the molecular events underlying hair cell regeneration in birds may allow for identification and eventually manipulation of relevant pathways in mammals to stimulate regeneration and restore hearing in deaf patients.Gene expression was profiled in forskolin treated (i.e., proliferating) and quiescent control auditory epithelia of post-hatch chicks using an Affymetrix whole-genome chicken array after 24 (n = 6), 48 (n = 6), and 72 (n = 12) hours in culture. In the forskolin-treated epithelia there was significant (p<0.05; >two-fold change) upregulation of many genes thought to be relevant to cell cycle control and inner ear development. Gene set enrichment analysis was performed on the data and identified myriad microRNAs that are likely to be upregulated in the regenerating tissue, including microRNA181a (miR181a), which is known to mediate proliferation in other systems. Functional experiments showed that miR181a overexpression is sufficient to stimulate proliferation within the basilar papilla, as assayed by BrdU incorporation. Further, some of the newly produced cells express the early hair cell marker myosin VI, suggesting that miR181a transfection can result in the production of new hair cells.These studies have identified a single microRNA, miR181a, that can cause proliferation in the chicken auditory epithelium with production of new hair cells

    Phoenix Is Required for Mechanosensory Hair Cell Regeneration in the Zebrafish Lateral Line

    Get PDF
    In humans, the absence or irreversible loss of hair cells, the sensory mechanoreceptors in the cochlea, accounts for a large majority of acquired and congenital hearing disorders. In the auditory and vestibular neuroepithelia of the inner ear, hair cells are accompanied by another cell type called supporting cells. This second cell population has been described as having stem cell-like properties, allowing efficient hair cell replacement during embryonic and larval/fetal development of all vertebrates. However, mammals lose their regenerative capacity in most inner ear neuroepithelia in postnatal life. Remarkably, reptiles, birds, amphibians, and fish are different in that they can regenerate hair cells throughout their lifespan. The lateral line in amphibians and in fish is an additional sensory organ, which is used to detect water movements and is comprised of neuroepithelial patches, called neuromasts. These are similar in ultra-structure to the inner ear's neuroepithelia and they share the expression of various molecular markers. We examined the regeneration process in hair cells of the lateral line of zebrafish larvae carrying a retroviral integration in a previously uncharacterized gene, phoenix (pho). Phoenix mutant larvae develop normally and display a morphologically intact lateral line. However, after ablation of hair cells with copper or neomycin, their regeneration in pho mutants is severely impaired. We show that proliferation in the supporting cells is strongly decreased after damage to hair cells and correlates with the reduction of newly formed hair cells in the regenerating phoenix mutant neuromasts. The retroviral integration linked to the phenotype is in a novel gene with no known homologs showing high expression in neuromast supporting cells. Whereas its role during early development of the lateral line remains to be addressed, in later larval stages phoenix defines a new class of proteins implicated in hair cell regeneration

    Growth Hormone Promotes Hair Cell Regeneration in the Zebrafish (Danio rerio) Inner Ear following Acoustic Trauma

    Get PDF
    BACKGROUND: Previous microarray analysis showed that growth hormone (GH) was significantly upregulated following acoustic trauma in the zebrafish (Danio rerio) ear suggesting that GH may play an important role in the process of auditory hair cell regeneration. Our objective was to examine the effects of exogenous and endogenous GH on zebrafish inner ear epithelia following acoustic trauma. METHODOLOGY/PRINCIPAL FINDINGS: We induced auditory hair cell damage by exposing zebrafish to acoustic overstimulation. Fish were then injected intraperitoneally with either carp GH or buffer, and placed in a recovery tank for either one or two days. Phalloidin-, bromodeoxyuridine (BrdU)-, and TUNEL-labeling were used to examine hair cell densities, cell proliferation, and apoptosis, respectively. Two days post-trauma, saccular hair cell densities in GH-treated fish were similar to that of baseline controls, whereas buffer-injected fish showed significantly reduced densities of hair cell bundles. Cell proliferation was greater and apoptosis reduced in the saccules, lagenae, and utricles of GH-treated fish one day following trauma compared to controls. Fluorescent in situ hybridization (FISH) was used to examine the localization of GH mRNA in the zebrafish ear. At one day post-trauma, GH mRNA expression appeared to be localized perinuclearly around erythrocytes in the blood vessels of the inner ear epithelia. In order to examine the effects of endogenous GH on the process of cell proliferation in the ear, a GH antagonist was injected into zebrafish immediately following acoustic trauma, resulting in significantly decreased cell proliferation one day post-trauma in all three zebrafish inner ear end organs. CONCLUSIONS/SIGNIFICANCE: Our results show that exogenous GH promotes post-trauma auditory hair cell regeneration in the zebrafish ear through stimulating proliferation and suppressing apoptosis, and that endogenous GH signals are present in the zebrafish ear during the process of auditory hair cell regeneration

    Prospect and potential of Burkholderia sp. against Phytophthora capsici Leonian: a causative agent for foot rot disease of black pepper

    Get PDF
    Foot rot disease is a very destructive disease in black pepper in Malaysia. It is caused by Phytophthora capsici Leonian, which is a soilborne pathogenic protist (phylum, Oomycota) that infects aerial and subterranean structures of many host plants. This pathogen is a polycyclic, such that multiple cycles of infection and inoculum production occur in a single growing season. It is more prevalent in the tropics because of the favourable environmental conditions. The utilization of plant growth-promoting rhizobacteria (PGPR) as a biological control agent has been successfully implemented in controlling many plant pathogens. Many studies on the exploration of beneficial organisms have been carried out such as Pseudomonas fluorescens, which is one of the best examples used for the control of Fusarium wilt in tomato. Similarly, P. fluorescens is found to be an effective biocontrol agent against the foot rot disease in black pepper. Nowadays there is tremendous novel increase in the species of Burkholderia with either mutualistic or antagonistic interactions in the environment. Burkholderia sp. is an indigenous PGPR capable of producing a large number of commercially important hydrolytic enzymes and bioactive substances that promote plant growth and health; are eco-friendly, biodegradable and specific in their actions; and have a broad spectrum of antimicrobial activity in keeping down the population of phytopathogens, thus playing a great role in promoting sustainable agriculture today. Hence, in this book chapter, the potential applications of Burkholderia sp. to control foot rot disease of black pepper in Malaysia, their control mechanisms, plant growth promotion, commercial potentials and the future prospects as indigenous PGPR were discussed in relation to sustainable agriculture

    THE EFFECTS OF A HIGH-FAT DIET AND EXERCISE ON THE PGC-1α-FNDC5/IRISIN PATHWAY IN C57BL/6 MICE

    No full text
    Jake C. Parson1, Stephanie N. Vick1, Caleb W. Grote2, Janelle M. Ryals2, Douglas E. Wright2, & Brianne L. Guilford1. 1Southern Illinois University Edwardsville, Edwardsville, Illinois, 2University of Kansas Medical Center, Kansas City, Kansas; e-mail: [email protected] Recent research has identified irisin as a novel protein that stimulates the “browning” of white adipose by inducing thermogenesis in white adipose via increased uncoupling protein 1 (UCP1) levels. Exercise, in a peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) dependent manner, increases the release of the irisin precursor, fibronectin type III domain-containing protein 5 (FNDC5), from muscle. Irisin holds potential as a novel pharmacotherapeutic that could be used in the treatment of obesity. Prior studies have assessed the effects of exercise on irisin and proteins upstream and downstream of its activation, but the effects of diet on irisin have not been investigated. PURPOSE: The aim of this study was to evaluate the effects of diet and exercise on FNDC5 and associated proteins. METHODS: C57BL/6 mice were randomized into three groups for the 4 week intervention: Mice were fed a standard diet (Std), a high-fat diet (HF), or fed a high-fat diet and housed individually with free access to a running wheel (HFEX). At the end of the 4 week intervention, mice were sacrificed, tissues were harvested, and protein levels were measured in the gastrocnemius muscle using western blots. RESULTS: Body weight, fasting glucose and insulin, and homeostatic model of insulin resistance (HOMA-IR) were significantly higher in HF compared to Std and HFEX after the 4 week intervention. There was a trend (p = 0.09) toward increased FNDC5 levels in HF compared to HFEX. UCP-1 levels were significantly lower in the HFEX compared to both Std and HF. There were no significant differences among groups in PGC-1α. CONCLUSION: Although there were no statistically significant differences in FNDC5 levels, the trend toward increased FNDC5 in HF compared to HFEX suggests increased FNDC5 may be a compensatory mechanism to offset HF diet-induced weight gain by increasing energy expenditure. Exercise prevented excess weight gain and metabolic derangements in HF fed mice, but these effects do not appear to be mediated by increased FNDC5 levels. Further investigation, including assessment of FNDC5, PGC1-α, and UCP1 levels in adipose from these mice is needed to confirm the effects of HF feeding on the FNDC5/irisin pathway. Funding provided by Southern Illinois University Edwardsville Seed Grants for Transitional and Exploratory Projects

    Managing cropland and rangeland for climate mitigation: an expert elicitation on soil carbon in California

    No full text
    Understanding the magnitude of and uncertainty around soil carbon flux (SCF) is important in light of California’s efforts to increase SCF (from the atmosphere to soils) for climate change mitigation. SCF depends, to a great extent, on how soils are managed. Here, we summarize the results of an elicitation of soil science and carbon cycle experts aiming to characterize understanding of current SCF in California’s cropland and rangeland, and how it may respond to alternative management practices over time. We considered four cropland management practices—biochar, compost, cover crops, and no-till—and two rangeland management practices, compost and high-impact grazing. Results across all management practices reveal underlying uncertainties as well as very modest opportunities for soil carbon management to contribute meaningfully to California’s climate mitigation. Under median scenarios, experts expect all the surveyed management practices to reverse SCF from negative to positive, with direct carbon additions via biochar and compost offering the best potential for boosting the soil carbon pool
    corecore