10 research outputs found

    Interval model of a wind turbine power curve

    Get PDF
    The wind turbine power curve model is critical to a wind turbine’s power prediction and performance analysis. However, abnormal data in the training set decrease the prediction accuracy of trained models. This paper proposes a sample average approach-based method to construct an interval model of a wind turbine, which increases robustness against abnormal data and further improves the model accuracy. We compare our proposed methods with the traditional neural network-based and Bayesian neural network-based models in experimental data-based validations. Our model shows better performance in both accuracy and computational time

    Study on pathological and clinical characteristics of chronic HBV infected patients with HBsAg positive, HBV DNA negative, HBeAg negative

    Get PDF
    AimsStudy of clinical characteristics of hepatitis B virus deoxyribonucleic acid (HBV DNA)-negative, hepatitis B surface antigen (HBsAg)-positive, hepatitis B e antigen (HBeAg)-negative patients based on liver histopathology.MethodsWe retrospectively enrolled patients with chronic HBV infection diagnosis at Beijing Ditan Hospital from May 2008 to November 2020. To study the differences between patients with significant hepatic histopathology and those without significant hepatic histopathology. And to study the independent factors of significant hepatic histopathology.Results85 HBV DNA-negative and HBeAg-negative patients were 37.90 ± 10.30 years old, 23.50% of patients with grade of inflammation (G) >1, 35.30% of patients with liver fibrosis stage (S) >1, 44.70% patients were diagnosed with significant hepatic histopathology. Compared to the no significant hepatic histopathology group, another group had older age (41.70 ± 10.70 vs 34.80 ± 8.87 years, t=-3.28, P=0.002), higher total bilirubin (TBIL) [14.9(10.3, 22.4) vs 11(8.9, 14.4) μmol/L, z=-2.26, P=0.024], lower cholinesterase (CHE) (t=-2.86, P=0.005, 7388.00 ± 2156.00 vs 8988.00 ± 2823.00 U/L) and lower platelet (PLT) (t=2.75, P=0.007, 157.00 ± 61.40 vs 194.00 ± 61.00 10^9/L). Abnormal ALT patients are more likely to have significant hepatic histopathology (z=5.44, P=0.020, 66.70% vs 337.50%). G had significant correlation with CHE (P=0.008, r=-0.23), alanine aminotransferase (ALT) (P=0.041, r=0.18), aspartate aminotransferase (AST) (P=0.001, r=0.29). S had significant correlation with TBIL (P = 0.008, r = 0.23), age (P < 0.001, r = 0.32), international normalized ratio (INR) (P = 0.04, r = 0.23), CHE (P < 0.001, r = -0.30), PLT (P < 0.001, r = -0.40) and prothrombin time activity (PTA) (P = 0.046, r = -0.22). Multivariate logistic analysis indicated only age (95%CI=1.014~1.130, OR=1.069, P=0.013) was an impact factor for significant hepatic histopathology. The cutoff point of age was 34.30 years.ConclusionsA large proportion of chronic HBV infection patients with HBeAg-negative and HBV DNA-negative still have chronic hepatitis. Age is an independent factor for significant hepatic histopatholog

    Novel Strategy for Accurate Locating of Voltage Sag Sources in Smart Distribution Networks with Inverter-Interfaced Distributed Generators

    No full text
    With the aid of power quality monitoring systems (PQMSs), accurate locating of voltage sag sources, which has important significance for guiding maintenance personnel in finding and repairing faults as well as improving power supply reliability, has been becoming a new research hotspot. However, existing methods have unsatisfactory locating accuracy due to the integration of distributed generators (DGs) and fault resistance. In this paper, a novel strategy for accurately locating voltage sag sources in smart distribution networks is proposed. Based on inverse theory, which is well applied in geophysics, the accurate location issue is treated as a two-step optimization model. It aims at making the distribution of voltage phasors and current phasors obtained by theoretical short-circuit calculation match those actually observed as closely as possible. To guarantee the feasibility of the strategy, the effect of inverter-interfaced DGs (IIDGs) which are the main form of DG is considered in the short-circuit calculations. To guarantee the location accuracy of the strategy, fault resistance is treated as an optimization variable in the two-step optimization model to eliminate estimation error of fault resistance. Via two modified IEEE benchmarks with different scales, the validity and the superiorities in applicability and accuracy of the proposed strategy are verified

    Novel Method for Rapidly Constructing Active Power Steady-State Security Regions Incorporating the Equivalent Reactances of TCSCs

    No full text
    Active power steady-state security regions (APSSRs), which can provide guidance for prevention and control through security checks, is of great importance for the safe operation of power systems in which more and more sustainable energy power generation is integrated. As a mature flexible AC transmission system (FACTS) device, thyristor-controlled series compensators (TCSCs) can carry out series compensation for the transmission line by controlling its equivalent reactance. With the change of the equivalent reactance parameter of a TCSC, the nodal admittance matrix and power flow distribution of the power system also changes. Inevitably, the APSSR will be different. Therefore, it is necessary and important to further incorporate the equivalent reactance parameters of TCSCs in the APSSR expression, which is generally established in the space of node active power injections. In this paper, a rapid construction method of APSSRs incorporating the equivalent reactances of TCSCs is proposed. Firstly, applicability and efficiency of the conventional APSSR construction method for power systems with TCSCs are analyzed. Further, with equivalent disconnection of TCSC branches, the effect of TCSC equivalent reactances on the distribution of active power flow through changing the structure parameters is treated as modifying node active power injections. On this basis, explicit expressions of APSSRs with a single TCSC equivalent reactance parameter and double TCSC equivalent reactance parameters are derived, respectively. Moreover, by deducing the general formula of APSSRs with multiple TCSC equivalent reactance parameters, the feasibility of the proposed method for power systems with multiple TCSCs is analyzed. Eventually, via benchmarks with different scales and a different number of TCSCs, validity and superiorities of the proposed method in computational efficiency are demonstrated

    Novel Detection Method for Consecutive DC Commutation Failure Based on Daubechies Wavelet with 2nd-Order Vanishing Moments

    No full text
    Accurate detection and effective control strategy of commutation failure (CF) of high voltage direct current (HVDC) are of great significance for keeping the safe and stable operations of the hybrid power grid. At first, a novel detection method for consecutive CF is proposed. Concretely, the 2nd and higher orders’ derivative values of direct current are summarized as the core to judge CF by analyzing the physical characteristics of the direct current waveform of the converter station in CF. Then, the Daubechies wavelet coefficient that can represent the 2nd and higher order derivative values of direct current is derived. Once the wavelet coefficients of the sampling points are detected to exceed the threshold, the occurrence of CF is confirmed. Furthermore, by instantly increasing advanced firing angle β in the inverter side, an additional emergency control strategy to prevent subsequent CF is proposed. Eventually, with simulations of the benchmark model, the effectiveness and superiorities of the proposed detection method and additional control strategy in accuracy and rapidity are verified

    Extended Gersgorin Theorem-Based Parameter Feasible Domain to Prevent Harmonic Resonance in Power Grid

    No full text
    Harmonic resonance may cause abnormal operation and even damage of power facilities, further threatening normal and safe operation of power systems. For renewable energy generations, controlled loads and parallel reactive power compensating equipment, their operating statuses can vary frequently. Therefore, the parameters of equivalent fundamental and harmonic admittance/impedance of these components exist in uncertainty, which will change the elements and eigenvalues of harmonic network admittance matrix. Consequently, harmonic resonance in power grid is becoming increasingly more complex. Hence, intense research about prevention and suppression of harmonic resonance, particularly the parameter feasible domain (PFD) which can keep away from harmonic resonance, are needed. For rapid online evaluation of PFD, a novel method without time-consuming pointwise precise eigenvalue computations is proposed. By analyzing the singularity of harmonic network admittance matrix, the explicit sufficient condition that the matrix elements should meet to prevent harmonic resonance is derived by the extended Gersgorin theorem. Further, via the non-uniqueness of similar transformation matrix (STM), a strategy to determine the appropriate STM is proposed to minimize the conservation of the obtained PFD. Eventually, the availability and advantages in computation efficiency and conservation of the method, are demonstrated through four different scale benchmarks

    Image_1_Functional molecular expression of nature killer cells correlated to HBsAg clearance in HBeAg-positive chronic hepatitis B patients during PEG-IFN α-2a therapy.tif

    No full text
    ObjectiveTo explore whether the frequencies and functional molecules expression of Natural Killer cells (NK cells) are related to hepatitis B surface antigen (HBsAg) disappearance in hepatitis B e envelope antigen (HBeAg)-positive patients with chronic hepatitis B (CHB) throughout peginterferon alpha-2a (PEG-IFN α-2a) treatment.MethodsIn this prospective research, HBeAg-positive patients with CHB received PEG-IFN α-2a treatment, completing 4-year follow-up. After PEG-IFN α-2a treatment, undetectable HBV DNA, HBsAg loss, and HBeAg disappearance were defined as functional cure. Proportions of NK, CD56dim, CD56bright, NKp46+, NKp46dim, NKp46high, and interferon alpha receptor 2 (IFNAR2)+ NK cells, and the mean fluorescence intensity (MFI) of NK cell surface receptors IFNAR2 and NKp46 were detected.Results66 patients were enrolled into the study in which 17 patients obtained functional cure. At baseline, hepatitis B virus desoxyribose nucleic acid (HBV DNA) titer in patients with functional cure was remarkably lower than that in Non-functional cure group. Compared with baseline, HBV DNA levels, HBsAg levels, and HBeAg levels significantly declined at week 12 and 24 of therapy in patients with functional cure. At baseline, the negative correlation between CD56bright NK% and HBV DNA and the negative correlation between CD56dim NK% and HBV DNA was showed; CD56bright NK% and IFNAR2 MFI in patients with functional cure were remarkably higher than those in patients without functional cure. After therapy, CD56bright NK% and NKp46high NK% in patients with functional cure were higher than those in patients without functional cure. In Functional cure group, after 24 weeks of treatment NK%, CD56bright NK%, IFNAR2 MFI weakly increased, and NKp46high NK% and NKp46 MFI significantly increased, meanwhile, CD56dim NK% and NKp46dim NK% decreased. Only NKp46 MFI increased after therapy in patients without functional cure.ConclusionThe lower HBV DNA load and the higher CD56bright NK% before therapy, and the higher the post-treatment CD56bright NK%, IFNAR2 MFI, NKp46high NK%, the easier to achieve functional cure.</p
    corecore