46 research outputs found

    Low temperature dipolar echo in amorphous dielectrics: Significance of relaxation and decoherence free two level systems

    Full text link
    The nature of dielectric echoes in amorphous solids at low temperatures is investigated. It is shown that at long delay times the echo amplitude is determined by a small subset of two level systems (TLS) having negligible relaxation and decoherence because of their weak coupling to phonons. The echo decay can then be described approximately by power law time dependencies with different powers at times longer and shorter than the typical TLS relaxation time. The theory is applied to recent measurements of two and three pulse dipolar echo in borosilicate glass BK7 and provides a perfect data fit in the broad time and temperature ranges under the assumption that there exist two TLS relaxation mechanisms due to TLS-phonons and TLS-TLS interaction. This interpretation is consistent with the previous experimental and theoretical investigations. Further experiments verifying the theory predictions are suggested.Comment: 10 pages, 8 figure

    Advances in Understanding Environmental Risks of Red Mud After the Ajka Spill, Hungary

    Get PDF
    In the 5 years since the 2010 Ajka red mud spill (Hungary), there have been 46 scientific studies assessing the key risks and impacts associated with the largest single release of bauxite-processing residue (red mud) to the environment. These studies have provided insight into the main environmental concerns, as well as the effectiveness of remedial efforts that can inform future management of red mud elsewhere. The key immediate risks after the spill were associated with the highly caustic nature of the red mud slurry and fine particle size, which once desiccated, could generate fugitive dust. Studies on affected populations showed no major hazards identified beyond caustic exposure, while red mud dust risks were considered equal to or lesser than those provided by urban dusts of similar particle size distribution. The longer-term environmental risks were related to the saline nature of the spill material (salinization of inundated soils) and the release and the potential cycling of oxyanion-forming metals and metalloids (e.g., Al, As, Cr, Mo, and V) in the soil–water environment. Of these, those that are soluble at high pH, inefficiently removed from solution during dilution and likely to be exchangeable at ambient pH are of chief concern (e.g., Mo and V). Various ecotoxicological studies have identified negative impacts of red mud-amended soils and sediments at high volumes (typically [5 %) on different test organisms, with some evidence of molecularlevel impacts at high dose (e.g., genotoxic effects on plants and mice). These data provide a valuable database to inform future toxicological studies for red mud. However, extensive management efforts in the aftermath of the spill greatly limited these exposure risks through leachate neutralization and red mud recovery from the affected land. Monitoring of affected soils, stream sediments, waters and aquatic biota (fungi, invertebrates and fish) have all shown a very rapid recovery toward prespill conditions. The accident also prompted research that has also highlighted potential benefits of red mud use for critical raw material recovery (e.g., Ga, Co, V, rare earths, inform), carbon sequestration, biofuel crop production, and use as a soil ameliorant

    Selection of yeast strains for bioethanol production from UK seaweeds

    Get PDF
    Macroalgae (seaweeds) are a promising feedstock for the production of third generation bioethanol, since they have high carbohydrate contents, contain little or no lignin and are available in abundance. However, seaweeds typically contain a more diverse array of monomeric sugars than are commonly present in feedstocks derived from lignocellulosic material which are currently used for bioethanol production. Hence, identification of a suitable fermentative microorganism that can utilise the principal sugars released from the hydrolysis of macroalgae remains a major objective. The present study used a phenotypic microarray technique to screen 24 different yeast strains for their ability to metabolise individual monosaccharides commonly found in seaweeds, as well as hydrolysates following an acid pre-treatment of five native UK seaweed species (Laminaria digitata, Fucus serratus, Chondrus crispus, Palmaria palmata and Ulva lactuca). Five strains of yeast (three Saccharomyces spp, one Pichia sp and one Candida sp) were selected and subsequently evaluated for bioethanol production during fermentation of the hydrolysates. Four out of the five selected strains converted these monomeric sugars into bioethanol, with the highest ethanol yield (13 g L−1) resulting from a fermentation using C. crispus hydrolysate with Saccharomyces cerevisiae YPS128. This study demonstrated the novel application of a phenotypic microarray technique to screen for yeast capable of metabolising sugars present in seaweed hydrolysates; however, metabolic activity did not always imply fermentative production of ethanol

    Le Marché du travail en Wallonie

    Full text link

    Leaching of copper and nickel in soil-water systems contaminated by bauxite residue (red mud) from Ajka, Hungary: the importance of soil organic matter

    Get PDF
    Red mud is a highly alkaline (pH >12) waste product from bauxite ore processing. The red mud spill at Ajka, Hungary, in 2010 released 1 million m3 of caustic red mud into the surrounding area with devastating results. Aerobic and anaerobic batch experiments and solid phase extraction techniques were used to assess the impact of red mud addition on the mobility of Cu and Ni in soils from near the Ajka spill site. Red mud addition increases aqueous dissolved organic carbon (DOC) concentrations due to soil alkalisation, and this led to increased mobility of Cu and Ni complexed to organic matter. With Ajka soils, more Cu was mobilised by contact with red mud than Ni, despite a higher overall Ni concentration in the solid phase. This is most probably because Cu has a higher affinity to form complexes with organic matter than Ni. In aerobic experiments, contact with the atmosphere reduced soil pH via carbonation reactions, and this reduced organic matter dissolution and thereby lowered Cu/Ni mobility. These data show that the mixing of red mud into organic rich soils is an area of concern, as there is a potential to mobilise Cu and Ni as organically bound complexes, via soil alkalisation. This could be especially problematic in locations where anaerobic conditions can prevail, such as wetland areas contaminated by the spill
    corecore