11 research outputs found

    Activation of VTA GABA Neurons Disrupts Reward Consumption

    Get PDF
    The activity of Ventral Tegmental Area (VTA) dopamine (DA) neurons promotes behavioral responses to rewards and environmental stimuli that predict them. VTA GABA inputs synapse directly onto DA neurons and may regulate DA neuronal activity to alter reward-related behaviors, however, the functional consequences of selective activation of VTA GABA neurons remains unknown. Here, we show that in vivo optogenetic activation of VTA GABA neurons disrupts reward consummatory behavior, but not conditioned anticipatory behavior in response to reward-predictive cues. In addition, direct activation of VTA GABA projections to the nucleus accumbens (NAc) resulted in detectable GABA release, but did not alter reward consumption. Furthermore, optogenetic stimulation of VTA GABA neurons directly suppressed the activity and excitability of neighboring DA neurons, as well as the release of DA in the NAc, suggesting that the dynamic interplay between VTA DA and GABA neurons can control the initiation and termination of reward-related behaviors

    Activation of VTA GABA Neurons Disrupts Reward Consumption

    Get PDF
    SummaryThe activity of ventral tegmental area (VTA) dopamine (DA) neurons promotes behavioral responses to rewards and environmental stimuli that predict them. VTA GABA inputs synapse directly onto DA neurons and may regulate DA neuronal activity to alter reward-related behaviors; however, the functional consequences of selective activation of VTA GABA neurons remains unknown. Here, we show that in vivo optogenetic activation of VTA GABA neurons disrupts reward consummatory behavior but not conditioned anticipatory behavior in response to reward-predictive cues. In addition, direct activation of VTA GABA projections to the nucleus accumbens (NAc) resulted in detectable GABA release but did not alter reward consumption. Furthermore, optogenetic stimulation of VTA GABA neurons directly suppressed the activity and excitability of neighboring DA neurons as well as the release of DA in the NAc, suggesting that the dynamic interplay between VTA DA and GABA neurons can control the initiation and termination of reward-related behaviors

    Dual action of ketamine confines addiction liability

    No full text
    Ketamine is used clinically as an anaesthetic and a fast-acting antidepressant, and recreationally for its dissociative properties, raising concerns of addiction as a possible side effect. Addictive drugs such as cocaine increase the levels of dopamine in the nucleus accumbens. This facilitates synaptic plasticity in the mesolimbic system, which causes behavioural adaptations and eventually drives the transition to compulsion1-4. The addiction liability of ketamine is a matter of much debate, in part because of its complex pharmacology that among several targets includes N-methyl-D-aspartic acid (NMDA) receptor (NMDAR) antagonism5,6. Here we show that ketamine does not induce the synaptic plasticity that is typically observed with addictive drugs in mice, despite eliciting robust dopamine transients in the nucleus accumbens. Ketamine nevertheless supported reinforcement through the disinhibition of dopamine neurons in the ventral tegmental area (VTA). This effect was mediated by NMDAR antagonism in GABA (γ-aminobutyric acid) neurons of the VTA, but was quickly terminated by type-2 dopamine receptors on dopamine neurons. The rapid off-kinetics of the dopamine transients along with the NMDAR antagonism precluded the induction of synaptic plasticity in the VTA and the nucleus accumbens, and did not elicit locomotor sensitization or uncontrolled self-administration. In summary, the dual action of ketamine leads to a unique constellation of dopamine-driven positive reinforcement, but low addiction liability

    Dynamic dichotomy of accumbal population activity underlies cocaine sensitization

    No full text
    Locomotor sensitization (LS) is an early behavioral adaptation to addictive drugs, driven by the increase of dopamine in the Nucleus Accumbens (NAc). However, the effect on accumbal population activity remains elusive. Here, we used single-cell calcium imaging in mice to record the activity of dopamine-1-receptor (D1R) and dopamine-2-receptor (D2R) expressing spiny projection neurons (SPNs) during cocaine LS. Acute exposure to cocaine elevated D1R SPN activity and reduced D2R SPN activity, albeit with high variability between neurons. During LS, the number of D1R and D2R neurons responding in opposite directions increased. Moreover, preventing LS by inhibition of the ERK signaling pathway decreased the number of cocaine responsive D1R SPNs, but had little effect on D2R SPNs. These results indicate that accumbal population dichotomy is dynamic and contains a subgroup of D1R SPNs that eventually drives LS. Insights into the drug-related activity dynamics provides a foundation for understanding the circuit-level addiction pathogenesis

    Social transmission of food safety depends on synaptic plasticity in the prefrontal cortex

    No full text
    When an animal is facing unfamiliar food, its odor, together with semiochemicals emanating from a conspecific, can constitute a safety message and authorize intake. The piriform cortex (PiC) codes olfactory information, and the inactivation of neurons in the nucleus accumbens (NAc) can acutely trigger consumption. However, the neural circuit and cellular substrate of transition of olfactory perception into value-based actions remain elusive. We detected enhanced activity after social transmission between two mice in neurons of the medial prefrontal cortex (mPFC) that target the NAc and receive projections from the PiC. Exposure to a conspecific potentiated the excitatory postsynaptic currents in NAc projectors, whereas blocking transmission from PiC to mPFC prevented social transmission. Thus, synaptic plasticity in the mPFC is a cellular substrate of social transmission of food safety

    Stochastic synaptic plasticity underlying compulsion in a model of addiction

    No full text
    Activation of the mesolimbic dopamine system reinforces goal-directed behaviours. With repetitive stimulation-for example, by chronic drug abuse-the reinforcement may become compulsive and intake continues even in the face of major negative consequences. Here we gave mice the opportunity to optogenetically self-stimulate dopaminergic neurons and observed that only a fraction of mice persevered if they had to endure an electric shock. Compulsive lever pressing was associated with an activity peak in the projection terminals from the orbitofrontal cortex (OFC) to the dorsal striatum. Although brief inhibition of OFC neurons temporarily relieved compulsive reinforcement, we found that transmission from the OFC to the striatum was permanently potentiated in persevering mice. To establish causality, we potentiated these synapses in vivo in mice that stopped optogenetic self-stimulation of dopamine neurons because of punishment; this led to compulsive lever pressing, whereas depotentiation in persevering mice had the converse effect. In summary, synaptic potentiation of transmission from the OFC to the dorsal striatum drives compulsive reinforcement, a defining symptom of addiction

    Synaptic mechanism underlying serotonin modulation of transition to cocaine addiction

    No full text
    Compulsive drug use despite adverse consequences defines addiction. While mesolimbic dopamine signaling is sufficient to drive compulsion, psychostimulants such as cocaine also boost extracellular serotonin (5-HT) by inhibiting reuptake. We used SERT Met172 knockin (SertKI) mice carrying a transporter that no longer binds cocaine to abolish 5-HT transients during drug self-administration (SA). SertKI mice showed an enhanced transition to compulsion. On the other hand, pharmacologically elevating 5-HT reversed the inherently high rate of compulsion transition with optogenetic dopamine self-stimulation. The bidirectional effect on behavior was explained by presynaptic depression of orbitofrontal cortex to dorsal striatum synapses induced by 5-HT via 5-HT(1B) receptors. Consequently, in projection-specific 5-HT(1B) receptor knockout mice the fraction of individuals compulsively self-administering cocaine was elevated

    Museum in search of Indian cultural exhibits

    No full text
    Hyperdopaminergic states in mental disorders are associated with disruptive deficits in decision making. However, the precise contribution of topographically distinct mesencephalic dopamine pathways to decision-making processes remains elusive. Here we show, using a multidisciplinary approach, how hyperactivity of ascending projections from the ventral tegmental area (VTA) contributes to impaired flexible decision making in rats. Activation of the VTA-nucleus accumbens pathway leads to insensitivity to loss and punishment due to impaired processing of negative reward prediction errors. In contrast, activation of the VTA-prefrontal cortex pathway promotes risky decision making without affecting the ability to choose the economically most beneficial option. Together, these findings show how malfunction of ascending VTA projections affects value-based decision making, suggesting a potential mechanism through which increased forebrain dopamine signaling leads to aberrant behavior, as is seen in substance abuse, mania, and after dopamine replacement therapy in Parkinson's disease
    corecore