1,302 research outputs found

    On a mechanism for enhancing magnetic activity in tidally interacting binaries

    Get PDF
    We suggest a mechanism for enhancing magnetic activity in tidally interacting binaries. We suppose that the deviation of the primary star from spherical symmetry due to the tidal influence of the companion leads to stellar pulsation in its fundamental mode. It is shown that stellar radial pulsation amplifies torsional Alfv{\'e}n waves in a dipole-like magnetic field, buried in the interior, according to the recently proposed swing wave-wave interaction (Zaqarashvili 2001). Then amplified Alfv{\'e}n waves lead to the onset of large-scale torsional oscillations, and magnetic flux tubes arising towards the surface owing to magnetic buoyancy diffuse into the atmosphere producing enhanced chromospheric and coronal emission.Comment: Accepted in Ap

    Stellar Iron Abundances: non-LTE Effects

    Get PDF
    We report new statistical equilibrium calculations for Fe I and Fe II in the atmosphere of Late-Type stars. We used atomic models for Fe I and Fe II having respectively 256 and 190 levels, as well as 2117 and 3443 radiative transitions. Photoionization cross-sections are from the Iron Project. These atomic models were used to investigate non-LTE effects in iron abundances of Late-Type stars with different atmospheric parameters. We found that most Fe I lines in metal-poor stars are formed in conditions far from LTE. We derived metallicity corrections of about 0.3 dex with respect to LTE values, for the case of stars with [Fe/H] ~ -3.0. Fe II is found not to be affected by significant non-LTE effects. The main non-LTE effect invoked in the case of Fe I is overionization by ultraviolet radiation, thus classical ionization equilibrium is far to be satisfied. An important consequence is that surface gravities derived by LTE analysis are in error and should be corrected before final abundances corrections. This apparently solves the observed discrepancy between spectroscopic surface gravities derived by LTE analyses and those derived from Hipparcos parallaxes. A table of non-LTE [Fe/H] and log g values for a sample of metal-poor late-type stars is given.Comment: 22 pages, 9 figures, 1 table, ApJ style, accepte

    A Far-Ultraviolet Spectroscopic Survey of Luminous Cool Stars

    Full text link
    FUSE ultraviolet spectra of 8 giant and supergiant stars reveal that high temperature (3 X 10^5 K) atmospheres are common in luminous cool stars and extend across the color-magnitude diagram from Alpha Car (F0 II) to the cool giant Alpha Tau (K5 III). Emission present in these spectra includes chromospheric H-Lyman Beta, Fe II, C I, and transition region lines of C III, O VI, Si III, Si IV. Emission lines of Fe XVIII and Fe XIX signaling temperatures of ~10^7 K and coronal material are found in the most active stars, Beta Cet and 31 Com. A short-term flux variation, perhaps a flare, was detected in Beta Cet during our observation. Stellar surface fluxes of the emission of C III and O VI are correlated and decrease rapidly towards the cooler stars, reminiscent of the decay of magnetically-heated atmospheres. Profiles of the C III (977A) lines suggest that mass outflow is underway at T~80,000 K, and the winds are warm. Indications of outflow at higher temperatures (3 X 10^5K) are revealed by O VI asymmetries and the line widths themselves. High temperature species are absent in the M-supergiant Alpha Ori. Narrow fluorescent lines of Fe II appear in the spectra of many giants and supergiants, apparently pumped by H Lyman Alpha, and formed in extended atmospheres. Instrumental characteristics that affect cool star spectra are discussed.Comment: Accept for publication in The Astrophysical Journal; 22 pages of text, 23 figures and 8 table

    The system parameters of DW Ursae Majoris

    Get PDF
    We present new constraints on the system parameters of the SW Sextantis star DW Ursae Majoris, based on ultraviolet (UV) eclipse observations with the Hubble Space Telescope. Our data were obtained during a low state of the system, in which the UV light was dominated by the hot white dwarf (WD) primary. Eclipse analysis, using the full Roche lobe geometry, allows us to set firm limits on the masses and radii of the system components and the distance between them: 0.67 \leq M_1/M_sun \leq 1.06, 0.008 \leq R_1/R_sun \leq 0.014, M_2/M_sun > 0.16, R_2/R_sun > 0.28 and a/R_sun > 1.05. For q = M_2/M_1 < 1.5 the inclination must satisfy i > 71 degrees. Using Smith & Dhillon's mass-period relation for CV secondaries, our estimates for the system parameters become M_1/M_sun = 0.77 \pm 0.07, R_1/R_sun = 0.012 \pm 0.001, M_2/M_sun = 0.30 \pm 0.10, R_2/R_sun = 0.34 \pm 0.04, q =0.39 \pm 0.12, i = 82 \pm 4 degrees and a/R_sun = 1.14 \pm 0.06. We have also estimated the spectral type of the secondary, M3.5 \pm 1.0, and distance to the system, d =930 \pm 160 pc, from time-resolved I- and K-band photometry. Finally, we have repeated Knigge et al.'s WD model atmosphere fit to the low-state UV spectrum of DW UMa in order to account for the higher surface gravity indicated by our eclipse analysis. In this way we obtained a second estimate for the distance, d = 590 \pm 100 pc, which allows us to obtain a second estimate for the spectral type of the secondary, M7 \pm 2.0. We conclude that the true value for the distance and spectral type will probably be in between the values obtained by the two methods.Comment: 23 pages including 5 figures and 3 tables. Accepted for publication in Ap

    HST Observations of Chromospheres in Metal Deficient Field Giants

    Full text link
    HST high resolution spectra of metal-deficient field giants more than double the stars in previous studies, span about 3 magnitudes on the red giant branch, and sample an abundance range [Fe/H]= -1 to -3. These stars, in spite of their age and low metallicity, possess chromospheric fluxes of Mg II (2800 Angstrom) that are within a factor of 4 of Population I stars, and give signs of a dependence on the metal abundance at the lowest metallicities. The Mg II k-line widths depend on luminosity and correlate with metallicity. Line profile asymmetries reveal outflows that occur at lower luminosities (M_V = -0.8) than detected in Ca K and H-alpha lines in metal-poor giants, suggesting mass outflow occurs over a larger span of the red giant branch than previously thought, and confirming that the Mg II lines are good wind diagnostics. These results do not support a magnetically dominated chromosphere, but appear more consistent with some sort of hydrodynamic, or acoustic heating of the outer atmospheres.Comment: 36 pages, 12 figures, 7 tables, and accepted for publication in The Astronomical Journa

    Irradiation of the secondary star in X-ray Nova Scorpii 1994 (=GRO J1655--40)

    Get PDF
    We have obtained intermediate resolution optical spectra of the black-hole candidate Nova Sco 1994 in June 1996, when the source was in an X-ray/optical active state (R~15.05). We measure the radial velocity curve of the secondary star and obtain a semi-amplitude of 279+/-10 km/s; a value which is 30 per cent larger than the value obtained when the source is in quiescence. Our large value for K_2 is consistent with 60 +9,-7 per cent of the secondary star's surface being heated; compared to 35 per cent, which is what one would expect if only the inner face of the secondary star were irradiated. Effects such as irradiation-induced flows on the secondary star may be important in explaining the observed large value for K_2.Comment: 5 pages, 2 figures, accepted by MNRA

    Magnetic Flux Cancellation in Ellerman Bombs

    Get PDF
    Ellerman Bombs (EBs) are often found to be co-spatial with bipolar photospheric magnetic fields. We use Hα imaging spectroscopy along with Fe I 6302.5 Å spectropolarimetry from the Swedish 1 m Solar Telescope (SST), combined with data from the Solar Dynamic Observatory, to study EBs and the evolution of the local magnetic fields at EB locations. EBs are found via an EB detection and tracking algorithm. Using NICOLE inversions of the spectropolarimetric data, we find that, on average, (3.43 ± 0.49) × 1024 erg of stored magnetic energy disappears from the bipolar region during EB burning. The inversions also show flux cancellation rates of 1014–1015 Mx s−1 and temperature enhancements of 200 K at the detection footpoints. We investigate the near-simultaneous flaring of EBs due to co-temporal flux emergence from a sunspot, which shows a decrease in transverse velocity when interacting with an existing, stationary area of opposite polarity magnetic flux, resulting in the formation of the EBs. We also show that these EBs can be fueled further by additional, faster moving, negative magnetic flux regions

    GJ 900: A new hierarchical system with low-mass components

    Full text link
    Speckle interferometric observations made with the 6 m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences in 2000 revealed the triple nature of the nearby (πHip=51.80±1.74\pi_{Hip}=51.80\pm1.74 mas) low-mass young (≈200\approx200 Myr) star GJ 900. The configuration of the triple system allowed it to be dynamically unstable. Differential photometry performed from 2000 through 2004 yielded II- and KK-band absolute magnitudes and spectral types for the components to be IAI_{A}=6.66±\pm0.08, IBI_{B}=9.15±\pm0.11, ICI_{C}=10.08±\pm0.26, KAK_{A}=4.84±\pm0.08, KBK_{B}=6.76±\pm0.20, KCK_{C}=7.39±\pm0.31, SpASp_{A}≈\approxK5--K7, SpBSp_{B}≈\approxM3--M4, SpCSp_{C}≈\approxM5--M6. The ``mass--luminosity'' relation is used to estimate the individual masses of the components: MA\mathcal{M}_{A}≈0.64M⊙\approx0.64\mathcal{M}_{\odot}, MB\mathcal{M}_{B}≈0.21M⊙\approx0.21\mathcal{M}_{\odot}, MC\mathcal{M}_{C}≈0.13M⊙\approx0.13\mathcal{M}_{\odot}. From the observations of the components relative motion in the period 2000--2006, we conclude that GJ 900 is a hierarchical triple star with the possible orbital periods PA−BC_{A-BC}≈\approx80 yrs and PBC_{BC}≈\approx20 yrs. An analysis of the 2MASS images of the region around GJ 900 leads us to suggest that the system can include other very-low-mass components.Comment: 7 pages, 5 figure
    • 

    corecore