40 research outputs found

    Blood Vessels Under the Microscope

    Get PDF
    This paper looks at blood vessels. All humans and animals have blood vessels, including your pet rabbit or dog, a whale or a giraffe! We need blood vessels to stay alive. This paper answers many questions, including what blood vessels are used for and why we need them. It looks at how and why blood vessels grow and what they look like. It also explores what happens when things go wrong with blood vessels and if blood vessels are ever bad for us. So, if you want to know how many miles of blood vessels there are in your body, learn about problems astronauts have in space, see real blood vessels through a microscope, or learn how to keep your blood vessels healthy, you are reading the right article

    Direct numerical simulation of turbulent counterflow nonpremixed flames

    Full text link
    This paper presents our recent progress in terascale three-dimensional simulations of turbulent nonpremixed flames in the presence of a mean flow strain and fine water droplets. Under the ongoing university collaborative project supported by the DOE SciDAC Program [1] along with the INCITE 2007 Project [2], the study aims at bringing the state-of-the-art high-fidelity simulation capability to the next level by incorporating various advanced physical models for soot formation, radiative heat transfer, and lagrangian spray dynamics, to an unprecedented degree of detail in high-fidelity simulation application. The targeted science issue is fundamental characteristics of flame suppression by the complex interaction between turbulence, chemistry, radiation, and water spray. The high quality simulation data with full consideration of multi-physics processes will allow fundamental understanding of the key physical and chemical mechanisms in the flame quenching behavior. In this paper, recent efforts on numerical algorithms and model development toward the targeted terascale 3D simulations are discussed and some preliminary results are presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58180/2/jpconf7_78_012029.pd

    Tropomyosin 1: multiple roles in the developing heart and in the formation of congenital heart defects

    Get PDF
    Tropomyosin 1 (TPM1) is an essential sarcomeric component, stabilising the thin filament and facilitating actin's interaction with myosin. A number of sarcomeric proteins, such as alpha myosin heavy chain, play crucial roles in cardiac development. Mutations in these genes have been linked to congenital heart defects (CHDs), occurring in approximately 1 in 145 live births. To date, TPM1 has not been associated with isolated CHDs. Analysis of 380 CHD cases revealed three novel mutations in the TPM1 gene; IVS1 + 2T > C, I130V, S229F and a polyadenylation signal site variant GATAAA/AATAAA. Analysis of IVS1 + 2T > C revealed aberrant pre-mRNA splicing. In addition, abnormal structural properties were found in hearts transfected with TPM1 carrying I130V and S229F mutations. Phenotypic analysis of TPM1 morpholino-treated embryos revealed roles for TPM1 in cardiac looping, atrial septation and ventricular trabeculae formation and increased apoptosis was seen within the heart. In addition, sarcomere assembly was affected and altered action potentials were exhibited. This study demonstrated that sarcomeric TPM1 plays vital roles in cardiogenesis and is a suitable candidate gene for screening individuals with isolated CHDs

    Application of the Large-Eddy Approach to the Simulation of Turbulence in Uniform Shear Flow

    No full text
    In the Rogallo approach to the simulation of homogeneous turbulence in uniform shear flow, the equations of motion are solved in a reference frame that is moving with the mean flow. This choice of reference frame allows the application of periodic boundary conditions to the fluctuating velocity components and the use of a highly accurate spectral scheme for the spatial discretization. However, as time is advanced, the reference frame becomes more and more skewed and a regridding of the computational domain using the periodic structure of the velocity components is required. This regridding procedure introduces aliasing errors that are removed in direct numerical simulation. This study addresses the application of this approach to large-eddy simulation of turbulence in uniform shear flow. Results are compared between direct numerical simulation and large-eddy simulation

    Large-Eddy Simulation of Homogeneous Shear Flows With Several Subgrid-Scale Models

    No full text
    In this article, large eddy simulation is used to simulate homogeneous shear flows. The spatial discretization is accomplished by the spectral collocation method and a third-order Rungeā€“Kutta method is used to integrate the time-dependent terms. For the estimation of the subgrid-scale stress tensor, the Smagorinsky model, the dynamic model, the scale-similarity model and the mixed model are used. Their predicting performance for homogeneous shear flow is compared accordingly. The initial Reynolds number varies from 33 to 99 and the initial shear number is 2. Evolution of the turbulent kinetic energy, the growth rate, the anisotropy component and the subgrid-scale dissipation rate is presented. In addition, the performance of several filters is examined
    corecore