428 research outputs found

    Corrosion reduction of aluminum alloys in flowing high-temperature water

    Get PDF
    Report describes a technique for reducing the corrosion rate of aluminum by adding colloidal substances in a closed-loop system. Experimental work shows that the addition of graphite and colloidal hydrated aluminum oxide significantly reduces the corrosion rate in flowing high-temperature water

    Study made of corrosion resistance of stainless steel and nickel alloys in nuclear reactor superheaters

    Get PDF
    Experiments performed under conditions found in nuclear reactor superheaters determine the corrosion rate of stainless steel and nickel alloys used in them. Electropolishing was the primary surface treatment before the corrosion test. Corrosion is determined by weight loss of specimens after defilming

    Raman microscopy of lithium-manganese-rich transition metal oxide cathodes

    Get PDF
    Lithium-rich and manganese-rich (LMR) layered transition metal (TM) oxide composites with general formula xLi2MnO3 • (1- x)LiMO2 (M = Ni, Co, Mn) are promising cathode candidates for high energy density lithium ion batteries. Lithium-manganese-rich TM oxides crystallize as a nanocomposite layered phase whose structure further evolves with electrochemical cycling. Raman spectroscopy is a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich TM oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this study, Raman microscopy is used to investigate lithium-rich and manganese-rich TM cathodes as a function of voltage and electrochemical cycling at various temperatures. No growth of a spinel phase is observed within the cycling conditions. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. The results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets

    CORROSION OF SOME REACTOR MATERIALS IN DILUTE PHOSPHORIC ACID

    Get PDF
    Corrosion tests in dilute phosphoric acid (pH 3.5) at elevated temperature are described for X8001 aluminum, 18-8 stainless steels, aluminized carbon steel, and Zircaloy. In a 307-day dynamic test at 18 ft/sec and 315 deg C, X8001 aluminum corroded at a rate of 1/2 mdd for the first 240 days. In subsequent exposures, the corrosion rate increased, but the total average penetration at 307 days was only 0.0005 inch. At 200 days, the total corrosion in this test was one-fiftieth that in distilled water. Static tests at 225 deg C gave corrosion rates too low to measure (<0.2 mdd). Of several different 18-8 stainless steels tested in this solution at 315 deg C, only sensitized type 316 suffered intergranular attack. General attack rates of the other samples, of the order of 1/4 mdd, were obtained for the period from 94 to 186 days. Although this is much larger than the rate in distilled water, it represents a penetration rate of only about 5 x 10/sup -//sup 5/ inch/year. Aluminized carbon steel did not suffer rapid corrosion in this solution at 315 deg C, even when large areas of the carbon steel were exposed. There was a tendency for corrosion to separate the steel and aluminum with some specimens, depending on the heat treatment. Zircaloy-2 and Zircaloy-3 corrosion were of the same order in this solution at 315 deg C as in water. (auth

    CORROSION OF ALUMINUM AND ITS ALLOYS IN SUPERHEATED STEAM

    Full text link
    The corrosion behavior of pure aluminum and some of its alloys in superheated steam was found to depend markedly on the method of starting the corrosion test. Pure aluminum samples survived only in tests that were brought to temperature and pressure very rapidly. Resistant Al-- Ni-- Fe alloys performed well only if a relatively slow starting procedure was used, suffering extensive blistering or complete disintegration in a test started rapidly. Over the range of temperature and pressure investigated, 400 to 540 deg C and 150 to 600 psig, with optimum starting conditions both pure aluminum and resistant Al-- Ni-- Fe alloy samples quickly formed a very protective oxide film. Interference colors were noted for exposures of several weeks. Samples surviving a 260-day test at 540 deg C and 600 psig had less than 1-mg/cm/sup 2/ weight gain. Nonresistant alloys disintegrated in short corrosion exposures. A penetrating attack, initiated in only a few spots, rapidly destroyed the samples. The effects of composition, dispersion of second-phsse compounds, hydrogen porosity, and pretreatments were investigated for 5.6% Ni--0.3% Fe-0.1% Ti in 540 deg C, 600-psig steam. It was concluded that porosity produced by corrosion product hydrogen was a major factor in the survival of samples. A mechanism for the rapid penetrating attack was proposed as based on observations made during the study of hydrogen porosity. Pretreatment of resistant alloy samples in dry air at 540 deg C or in high-temperature water at 350 deg C greatly reduced the amount of porosity produced by corrosion in superheated steam. (auth

    Histological assessment of a chronically implanted cylindrically-shaped, polymer-based neural probe in the monkey

    Get PDF
    Objective. Previous studies demonstrated the possibility to fabricate stereo-electroencephalography probes with high channel count and great design freedom, which incorporate macro-electrodes as well as micro-electrodes offering potential benefits for the pre-surgical evaluation of drug resistant epileptic patients. These new polyimide probes allowed to record local field potentials, multi- and single-unit activity (SUA) in the macaque monkey as early as 1 h after implantation, and yielded stable SUA for up to 26 d after implantation. The findings opened new perspectives for investigating mechanisms underlying focal epilepsy and its treatment, but before moving to possible human application, safety data are needed. In the present study we evaluate the tissue response of this new neural interface by assessing post-mortem the reaction of brain tissue along and around the probe implantation site. Approach. Three probes were implanted, independently, in the brain of one monkey (Macaca mulatta) at different times. We used specific immunostaining methods for visualizing neuronal cells and astrocytes, for measuring the extent of damage caused by the probe and for relating it with the implantation time. Main results. The size of the region where neurons cannot be detected did not exceed the size of the probe, indicating that a complete loss of neuronal cells is only present where the probe was physically positioned in the brain. Furthermore, around the probe shank, we observed a slightly reduced number of neurons within a radius of 50 µm and a modest increase in the number of astrocytes within 100 µm. Significance. In the light of previous electrophysiological findings, the present data suggest the potential usefulness and safety of this probe for human applications

    Environmentally assisted cracking in light water reactors. Semiannual report, July 1998-December 1998.

    Get PDF
    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from July 1998 to December 1998. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. Fatigue tests have been conducted to determine the crack initiation and crack growth characteristics of austenitic SSs in LWR environments. Procedures are presented for incorporating the effects of reactor coolant environments on the fatigue life of pressure vessel and piping steels. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E &gt; 1 MeV) in helium at 289 C in the Halden reactor. The results have been used to determine the influence of alloying and impurity elements on the susceptibility of these steels to irradiation-assisted stress corrosion cracking. Fracture toughness J-R curve tests were also conducted on two heats of Type 304 SS that were irradiated to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. Crack-growth-rate tests have been conducted on compact-tension specimens of Alloys 600 and 690 under constant load to evaluate the resistance of these alloys to stress corrosion cracking in LWR environments

    Electronic structure of Fe- vs. Ru-based dye molecules

    Get PDF
    In order to explore whether Ru can be replaced by inexpensive Fe in dye molecules for solar cells, the differences in the electronic structure of Fe- and Ru-based dyes are investigated by X-ray absorption spectroscopy and first-principles calculations. Molecules with the metal in a sixfold, octahedral N cage, such as tris(bipyridines) and tris(phenanthrolines), exhibit a systematic downward shift of the N 1s-to-π* transition when Ru is replaced by Fe. This shift is explained by an extra transfer of negative charge from the metal to the N ligands in the case of Fe, which reduces the binding energy of the N 1s core level. The C 1s-to-π* transitions show the opposite trend, with an increase in the transition energy when replacing Ru by Fe. Molecules with the metal in a fourfold, planar N cage (porphyrins) exhibit a more complex behavior due to a subtle competition between the crystal field, axial ligands, and the 2+ vs. 3+ oxidation states.This work was supported by the National Science Foundation (NSF) under Award Nos. CHE-1026245, DMR-1121288 (MRSEC), DMR-0537588 (SRC), and by the (U.S.) Department of Energy (DOE) under Contract Nos. DE-FG02-01ER45917 (end station) and DE-AC02-05CH11231 (ALS). P. L. Cook acknowledges support from the University of Wisconsin System 2012-2013 Applied Research Grant. J. M. García-Lastra and A. Rubio acknowledge financial support from the European Research Council (ERC-2010-AdG-Proposal No. 267374), Spanish Grants (FIS2011-65702-C02-01 and PIB2010US-00652), Grupos Consolidados (IT-319-07), and European Commission project CRONOS (280879-2).Peer Reviewe
    corecore