151 research outputs found

    Are anti-HIV IgAs good guys or bad guys?

    Get PDF

    Live-virus exposure of vaccine-protected macaques alters the anti-HIV-1 antibody repertoire in the absence of viremia

    Get PDF
    Background: We addressed the question whether live-virus challenges could alter vaccine-induced antibody (Ab) responses in vaccinated rhesus macaques (RMs) that completely resisted repeated exposures to R5-tropic simian-human immunodeficiency viruses encoding heterologous HIV clade C envelopes (SHIV-Cs). Results: We examined the Ab responses in aviremic RMs that had been immunized with a multi-component protein vaccine (multimeric HIV-1 gp160, HIV-1 Tat and SIV Gag-Pol particles) and compared anti-Env plasma Ab titers before and after repeated live-virus exposures. Although no viremia was ever detected in these animals, they showed significant increases in anti-gp140 Ab titers after they had encountered live SHIVs. When we investigated the dynamics of anti-Env Ab titers during the immunization and challenge phases further, we detected the expected, vaccine-induced increases of Ab responses about two weeks after the last protein immunization. Remarkably, these titers kept rising during the repeated virus challenges, although no viremia resulted. In contrast, in vaccinated RMs that were not exposed to virus, anti-gp140 Ab titers declined after the peak seen two weeks after the last immunization. These data suggest boosting of pre-existing, vaccine-induced Ab responses as a consequence of repeated live-virus exposures. Next, we screened polyclonal plasma samples from two of the completely protected vaccinees by peptide phage display and designed a strategy that selects for recombinant phages recognized only by Abs present after – but not before – any SHIV challenge. With this “subtractive biopanning” approach, we isolated V3 mimotopes that were only recognized after the animals had been exposed to live virus. By detailed epitope mapping of such anti-V3 Ab responses, we showed that the challenges not only boosted pre-existing binding and neutralizing Ab titers, but also induced Abs targeting neo-antigens presented by the heterologous challenge virus. Conclusions: Anti-Env Ab responses induced by recombinant protein vaccination were altered by the multiple, live SHIV challenges in vaccinees that had no detectable viral loads. These data may have implications for the interpretation of “vaccine only” responses in clinical vaccine trials

    Phylogenetic Relationship of the Complete Rauscher Murine Leukemia Virus Genome with Other Murine Leukemia Virus Genomes

    Get PDF
    AbstractWe report the complete nucleotide sequence of the genome of Rauscher murine leukemia virus (R-MuLV), the replication-competent helper virus present in the Rauscher virus complex, and its phylogenetic relationship with other murine leukemia virus genomes. An overall sequence identity of 97.6% was found between R-MuLV and the Friend helper virus (F-MuLV), and the two viruses were closely related on the phylogenetic trees constructed from eithergag, pol,orenvsequences. Moloney murine leukemia virus (Mo-MuLV) was the next closest relative to R-MuLV and F-MuLV on all trees, followed by Akv and radiation leukemia virus (RadLV). The most distantly related helper virus was Hortulanus murine leukemia virus (Ho-MuLV). Interestingly, Cas-Br-E branched with Mo-MuLV on thegagandpoltrees, whereas on theenvtree, it revealed the highest degree of relatedness to Ho-MuLV, possibly due to an ancient recombination with an Ho-MuLV ancestor. In summary, a phylogenetic analysis involving various MuLVs has been performed, in which the postulated close relationship between R-MuLV and F-MuLV has been confirmed, consistent with the pathobiology of the two viruses

    Pathogenic infection of Macaca nemestrina with a CCR5-tropic subtype-C simian-human immunodeficiency virus

    Get PDF
    Background: Although pig-tailed macaques (Macaca nemestrina) have been used in AIDS research for years, less is known about the early immunopathogenic events in this species, as compared to rhesus macaques (Macaca mulatta). Similarly, the events in early infection are well-characterized for simian immunodeficiency viruses (SIV), but less so for chimeric simian-human immunodeficiency viruses (SHIV), although the latter have been widely used in HIV vaccine studies. Here, we report the consequences of intrarectal infection with a CCR5-tropic clade C SHIV-1157ipd3N4 in pig-tailed macaques. Results: Plasma and cell-associated virus was detectable in peripheral blood and intestinal tissues of all four pig-tailed macaques following intrarectal inoculation with SHIV-1157ipd3N4. We also observed a rapid and irreversible loss of CD4+ T cells at multiple mucosal sites, resulting in a marked decrease of CD4:CD8 T cell ratios 0.5–4 weeks after inoculation. This depletion targeted subsets of CD4+ T cells expressing the CCR5 coreceptor and having a CD28-CD95+ effector memory phenotype, consistent with the R5-tropism of SHIV-1157ipd3N4. All three animals that were studied beyond the acute phase seroconverted as early as week 4, with two developing cross-clade neutralizing antibody responses by week 24. These two animals also demonstrated persistent plasma viremia for >48 weeks. One of these animals developed AIDS, as shown by peripheral blood CD4+ T-cell depletion starting at 20 weeks post inoculation. Conclusion: These findings indicate that SHIV-1157ipd3N4-induced pathogenesis in pig-tailed macaques followed a similar course as SIV-infected rhesus macaques. Thus, R5 SHIV-C-infection of pig-tailed macaques could provide a useful and relevant model for AIDS vaccine and pathogenesis research

    Characterization of HIV-1 subtype C envelope glycoproteins from perinatally infected children with different courses of disease

    Get PDF
    BACKGROUND: The causal mechanisms of differential disease progression in HIV-1 infected children remain poorly defined, and much of the accumulated knowledge comes from studies of subtype B infected individuals. The applicability of such findings to other subtypes, such as subtype C, remains to be substantiated. In this study, we longitudinally characterized the evolution of the Env V1–V5 region from seven subtype C HIV-1 perinatally infected children with different clinical outcomes. We investigated the possible influence of viral genotype and humoral immune response on disease progression in infants. RESULTS: Genetic analyses revealed that rapid progressors (infants that died in the first year of life) received and maintained a genetically homogeneous viral population throughout the disease course. In contrast, slow progressors (infants that remained clinically asymptomatic for up to four years) also exhibited low levels variation initially, but attained higher levels of diversity over time. Genetic assessment of variation, as indicated by dN/dS, showed that particular regions of Env undergo selective changes. Nevertheless, the magnitude and distribution of these changes did not segregate slow and rapid progressors. Longitudinal trends in Env V1–V5 length and the number of potential N-glycosylation sites varied among patients but also failed to discriminate between fast and slow progressors. Viral isolates from rapid progressors and slow progressors displayed no significant growth properties differences in vitro. The neutralizing activity in maternal and infant baseline plasma also varied in its effectiveness against the initial virus from the infants but did not differentiate rapid from slow progressors. Quantification of the neutralization susceptibility of the initial infant viral isolates to maternal baseline plasma indicated that both sensitive and resistant viruses were transmitted, irrespective of disease course. We showed that humoral immunity, whether passively acquired or developed de novo in the infected children, varied but was not predictive of disease progression. CONCLUSION: Our data suggest that neither genetic variation in env, or initial maternal neutralizing activity, or the level of passively acquired neutralizing antibody, or the level of the de novo neutralization response appear to be linked to differences in disease progression in subtype C HIV-1 infected children

    Truncated forms of human and simian immunodeficiency virus in infected individuals and rhesus macaques are unique or rare quasispecies

    Get PDF
    AbstractTruncated proviruses of variable sizes are present in peripheral blood mononuclear cells (PBMC) of human immunodeficiency virus type 1 (HIV-1)-infected persons and simian immunodeficiency virus (SIV)-infected rhesus macaques. Here, we investigated whether the highly deleted HIV and SIV proviruses are present in infected organisms as multiple copies or whether each truncated provirus is unique. Using end-point dilution, multiple long-distance (LD) DNA PCR assays were run in parallel using DNA extracted from PBMC of seropositive, treatment-naive persons and from lymph nodes of a rhesus monkey inoculated with cloned, full-length SIVmac239 DNA. The PCR products were titrated and mapped. Most truncated proviruses were present in the DNA samples tested as single, nonintegrated molecules that differed from one another in size and/or nucleotide sequence. These results indicate that truncated primate lentiviral sequences found in infected tissues are unique or rare quasispecies that do not replicate significantly

    Prior exposure to an attenuated Listeria vaccine does not reduce immunogenicity: pre-clinical assessment of the efficacy of a Listeria vaccine in the induction of immune responses against HIV

    Get PDF
    Abstract Background We have evaluated an attenuated Listeria monocytogenes (Lm) candidate vaccine vector in nonhuman primates using a delivery regimen relying solely on oral vaccination. We sought to determine the impact of prior Lm vector exposure on the development of new immune responses against HIV antigens. Findings Two groups of rhesus macaques one Lm naive, the other having documented prior Lm vector exposures, were evaluated in response to oral inoculations of the same vector expressing recombinant HIV-1 Gag protein. The efficacy of the Lm vector was determined by ELISA to assess the generation of anti-Listerial antibodies; cellular responses were measured by HIV-Gag specific ELISpot assay. Our results show that prior Lm exposures did not diminish the generation of de novo cellular responses against HIV, as compared to Listeria-naĂŻve monkeys. Moreover, empty vector exposures did not elicit potent antibody responses, consistent with the intracellular nature of Lm. Conclusions The present study demonstrates in a pre-clinical vaccine model, that prior oral immunization with an empty Lm vector does not diminish immunogenicity to Lm-expressed HIV genes. This work underscores the need for the continued development of attenuated Lm as an orally deliverable vaccine

    SHIV-1157i and passaged progeny viruses encoding R5 HIV-1 clade C env cause AIDS in rhesus monkeys

    Get PDF
    Background: Infection of nonhuman primates with simian immunodeficiency virus (SIV) or chimeric simian-human immunodeficiency virus (SHIV) strains is widely used to study lentiviral pathogenesis, antiviral immunity and the efficacy of AIDS vaccine candidates. SHIV challenges allow assessment of anti-HIV-1 envelope responses in primates. As such, SHIVs should mimic natural HIV-1 infection in humans and, to address the pandemic, encode HIV-1 Env components representing major viral subtypes worldwide. Results: We have developed a panel of clade C R5-tropic SHIVs based upon env of a Zambian pediatric isolate of HIV-1 clade C, the world's most prevalent HIV-1 subtype. The parental infectious proviral clone, SHIV-1157i, was rapidly passaged through five rhesus monkeys. After AIDS developed in the first animal at week 123 post-inoculation, infected blood was infused into a sixth monkey. Virus reisolated at this late stage was still exclusively R5 tropic and mucosally transmissible. Here we describe the long-term follow-up of this initial cohort of six monkeys. Two have remained non-progressors, whereas the other four gradually progressed to AIDS within 123–270 weeks post-exposure. Two progressors succumbed to opportunistic infections, including a case of SV40 encephalitis. Conclusion: These data document the disease progression induced by the first mucosally transmissible, pathogenic R5 non-clade B SHIV and suggest that SHIV-1157i-derived viruses, including the late-stage, highly replication-competent SHIV-1157ipd3N4 previously described (Song et al., 2006), display biological characteristics that mirror those of HIV-1 clade C and support their expanded use for AIDS vaccine studies in nonhuman primates
    • …
    corecore