255 research outputs found
Metformin and cancer in type 2 diabetes: a systematic review and comprehensive bias evaluation.
Background: Existing observational studies provide conflicting evidence for the causal effect of metformin use on cancer risk in patients with type-2 diabetes, and there are concerns about bias affecting a number of studies. Methods: MEDLINE was used to identify observational studies investigating the association between metformin and overall or site-specific cancer in people with type-2 diabetes. A systematic data extraction and bias assessment was conducted, in which risk of eight bias domains (outcome, exposure, control selection, baseline confounding, time-dependent confounding, immortal time, missing data, censoring methods) were assessed against pre-defined criteria, and rated as unlikely, low, medium or high. Results: Of 46 studies identified, 21 assessed the effect of metformin on all cancer. Reported relative risks ranged from 0.23 to 1.22, with 12/21 reporting a statistically significant protective effect and none a harmful effect. The range of estimates was similar for site-specific cancers; 3/46 studies were rated as low or unlikely risk of bias in all domains. Two of these had results consistent with no effect of metformin; one observed a moderate protective effect overall, but presented further analyses that the authors concluded were inconsistent with causality. However, 28/46 studies were at risk from bias through exposure definition, 22 through insufficient baseline adjustment and 35 from possible time-dependent confounding. Conclusions: Observational studies on metformin and cancer varied in design, and the majority were at risk of a range of biases. The studies least likely to be affected by bias did not support a causal effect of metformin on cancer risk
Ethnic disparities in initiation and intensification of diabetes treatment in adults with type 2 diabetes in the UK, 1990-2017: A cohort study.
BACKGROUND: Type 2 diabetes mellitus (T2DM) disproportionately affects individuals of nonwhite ethnic origin. Timely and appropriate initiation and intensification of glucose-lowering therapy is key to reducing the risk of major vascular outcomes. Given that ethnic inequalities in outcomes may stem from differences in therapeutic management, the aim of this study was to identify ethnic differences in the timeliness of initiation and intensification of glucose-lowering therapy in individuals newly diagnosed with T2DM in the United Kingdom. METHODS AND FINDINGS: An observational cohort study using the Clinical Practice Research Datalink was conducted using 162,238 adults aged 18 and over diagnosed with T2DM between 1990 and 2017 (mean age 62.7 years, 55.2% male); 93% were of white ethnicity (n = 150,754), 5% were South Asian (n = 8,139), and 2.1% were black (n = 3,345). Ethnic differences in time to initiation and intensification of diabetes treatment were estimated at three time points (initiation of noninsulin monotherapy, intensification to noninsulin combination therapy, and intensification to insulin therapy) using multivariable Cox proportional hazards regression adjusted for factors a priori hypothesised to be associated with initiation and intensification: age, sex, deprivation, glycated haemoglobin (HbA1c), body mass index (BMI), smoking status, comorbidities, consultations, medications, calendar year, and clustering by practice. Odds of experiencing therapeutic inertia (failure to intensify treatment within 12 months of HbA1c >7.5% [58 mmol/mol]), were estimated using multivariable logistic regression adjusted for the same hypothesised confounders. Noninsulin monotherapy was initiated earlier in South Asian and black groups (South Asian HR 1.21, 95% CI 1.08-1.36, p < 0.001; black HR 1.29, 95% CI 1.05-1.59, p = 0.017). Correspondingly, no ethnic differences in therapeutic inertia were evident at initiation. Intensification with noninsulin combination therapy was slower in both nonwhite ethnic groups relative to white (South Asian HR 0.80, 95% CI 0.74-0.87, p < 0.001; black HR 0.79, 95% CI 0.70-0.90, p < 0.001); treatment inertia at this stage was greater in nonwhite groups relative to white (South Asian odds ratio [OR] 1.45, 95% CI 1.23-1.70, p < 0.001; black OR 1.43, 95% CI 1.09-1.87, p = 0.010). Intensification to insulin therapy was slower again for black groups relative to white groups (South Asian HR 0.49, 95% CI 0.41-0.58, p < 0.001; black HR 0.69, 95% CI 0.53-0.89, p = 0.012); correspondingly, treatment inertia was significantly higher in nonwhite groups at this stage relative to white groups (South Asian OR 2.68, 95% CI 1.89-3.80 p < 0.001; black OR 1.82, 95% CI 1.13-2.79, p = 0.013). At both stages of treatment intensification, nonwhite groups had fewer HbA1c measurements than white groups. Limitations included variable quality and completeness of routinely recorded data and a lack of information on medication adherence. CONCLUSIONS: In this large UK cohort, we found persuasive evidence that South Asian and black groups intensified to noninsulin combination therapy and insulin therapy more slowly than white groups and experienced greater therapeutic inertia following identification of uncontrolled HbA1c. Reasons for delays are multifactorial and may, in part, be related to poorer long-term monitoring of risk factors in nonwhite groups. Initiatives to improve timely and appropriate intensification of diabetes treatment are key to reducing disparities in downstream vascular outcomes in these populations
KEAP1-modifying small molecule reveals muted NRF2 signaling responses in neural stem cells from Huntington's disease patients
The activity of the transcription factor nuclear factor-erythroid 2 p45-derived factor 2 (NRF2) is orchestrated and amplified through enhanced transcription of antioxidant and antiinflammatory target genes. The present study has characterized a triazole-containing inducer of NRF2 and elucidated the mechanism by which this molecule activates NRF2 signaling. In a highly selective manner, the compound covalently modifies a critical stress-sensor cysteine (C151) of the E3 ligase substrate adaptor protein Kelch-like ECH-associated protein 1 (KEAP1), the primary negative regulator of NRF2. We further used this inducer to probe the functional consequences of selective activation of NRF2 signaling in Huntington's disease (HD) mouse and human model systems. Surprisingly, we discovered a muted NRF2 activation response in human HD neural stem cells, which was restored by genetic correction of the disease-causing mutation. In contrast, selective activation of NRF2 signaling potently repressed the release of the proinflammatory cytokine IL-6 in primary mouse HD and WT microglia and astrocytes. Moreover, in primary monocytes from HD patients and healthy subjects, NRF2 induction repressed expression of the proinflammatory cytokines IL-1, IL-6, IL-8, and TNFα. Together, our results demonstrate a multifaceted protective potential of NRF2 signaling in key cell types relevant to HD pathology
Risk of 16 cancers across the full glycemic spectrum: a population-based cohort study using the UK Biobank.
INTRODUCTION: Diabetes is observed to increase cancer risk, leading to hypothesized direct effects of either hyperglycemia or medication. We investigated associations between glycosylated hemoglobin (HbA1c) across the whole glycemic spectrum and incidence of 16 cancers in a population sample with comprehensive adjustment for risk factors and medication. RESEARCH DESIGN AND METHODS: Linked data from the UK Biobank and UK cancer registry for all individuals with baseline HbA1c and no history of cancer at enrollment were used. Incident cancer was based on International Classification of Diseases - 10th Edition diagnostic codes. Age-standardized incidence rates were estimated by HbA1c category. Associations between HbA1c, modeled as a restricted cubic spline, and cancer risk were estimated using Cox proportional hazards models. RESULTS: Among 378 253 individuals with average follow-up of 7.1 years, 21 172 incident cancers occurred. While incidence for many of the 16 cancers was associated with hyperglycemia in crude analyses, these associations disappeared after multivariable adjustment, except for pancreatic cancer (HR 1.55, 95% CI 1.22 to 1.98 for 55 vs 35 mmol/mol), and a novel finding of an inverse association between HbA1c and premenopausal breast cancer (HR 1.27, 95% CI 1.00 to 1.60 for 25 vs 35 mmol/mol; HR 0.71, 95% CI 0.54 to 0.94 for 45 vs 35 mmol/mol), not observed for postmenopausal breast cancer. Adjustment for diabetes medications had no appreciable impact on HRs for cancer. CONCLUSIONS: Apart from pancreatic cancer, we did not demonstrate any independent positive association between HbA1c and cancer risk. These findings suggest that the potential for a cancer-inducing, direct effect of hyperglycemia may be misplaced
Marginal structural models for repeated measures where intercept and slope are correlated: An application exploring the benefit of nutritional supplements on weight gain in HIV-infected children initiating antiretroviral therapy
BackgroundThe impact of nutritional supplements on weight gain in HIV-infected children on antiretroviral treatment (ART) remains uncertain. Starting supplements depends upon current weight-for-age or other acute malnutrition indicators, producing time-dependent confounding. However, weight-for-age at ART initiation may affect subsequent weight gain, independent of supplement use. Implications for marginal structural models (MSMs) with inverse probability of treatment weights (IPTW) are unclear.MethodsIn the ARROW trial, non-randomised supplement use and weight-for-age were recorded monthly from ART initiation. The effect of supplements on weight-for-age over the first year was estimated using generalised estimating equation MSMs with IPTW, both with and without interaction terms between baseline weight-for-age and time. Separately, data were simulated assuming no supplement effect, with use depending on current weight-for-age, and weight-for-age trajectory depending on baseline weight-for-age to investigate potential bias associated with different MSM specifications.ResultsIn simulations, despite correctly specifying IPTW, omitting an interaction in the MSM between baseline weight-for-age and time produced increasingly biased estimates as associations between baseline weight-for-age and subsequent weight trajectory increased. Estimates were unbiased when the interaction between baseline weight-for-age and time was included, even if the data were simulated with no such interaction. In ARROW, without an interaction the estimated effect was +0.09 (95%CI +0.02,+0.16) greater weight-for-age gain per month's supplement use; this reduced to +0.03 (-0.04,+0.10) including the interaction.DiscussionThis study highlights a specific situation in which MSM model misspecification can occur and impact the resulting estimate. Since an interaction in the MSM (outcome) model does not bias the estimate of effect if the interaction does not exist, it may be advisable to include such a term when fitting MSMs for repeated measures
Metformin use and risk of cancer in patients with type 2 diabetes: a cohort study of primary care records using inverse probability weighting of marginal structural models.
BACKGROUND: Previous studies provide conflicting evidence on whether metformin is protective against cancer. When studying time-varying exposure to metformin, covariates such as body mass index (BMI) and glycated haemoglobin (HbA1c) may act as both confounders and causal pathway variables, and so cannot be handled adequately by standard regression methods. Marginal structural models (MSMs) with inverse probability of treatment weights (IPTW) can correctly adjust for such confounders. Using this approach, the main objective of this study was to estimate the effect of metformin on cancer risk compared with risk in patients with T2DM taking no medication. METHODS: Patients with incident type 2 diabetes (T2DM) were identified in the Clinical Practice Research Datalink (CPRD), a database of electronic health records derived from primary care in the UK. Patients entered the study at diabetes diagnosis or the first point after this when they had valid HbA1c and BMI measurements, and follow-up was split into 1-month intervals. Logistic regression was used to calculate IPTW; then the effect of metformin on all cancers (including and excluding non-melanoma skin cancer) and breast, prostate, lung, colorectal and pancreatic cancers was estimated in the weighted population. RESULTS: A total of 55 629 T2DM patients were alive and cancer-free at their study entry; 2530 people had incident cancer during a median follow-up time of 2.9 years [interquartile range (IQR) 1.3-5.4 years]. Using the MSM approach, the hazard ratio (HR) for all cancers, comparing treatment with metformin with no glucose-lowering treatment, was 1.02 (0.88-1.18). Results were robust to a range of sensitivity analyses and remained consistent when estimating the treatment effect by length of exposure. We also found no evidence of a protective effect of metformin on individual cancer outcomes. CONCLUSIONS: We find no evidence that metformin has a causal association with cancer risk
Test-Retest Reliability of Diffusion Tensor Imaging in Huntington's Disease.
Diffusion tensor imaging (DTI) has shown microstructural abnormalities in patients with Huntington's Disease (HD) and work is underway to characterise how these abnormalities change with disease progression. Using methods that will be applied in longitudinal research, we sought to establish the reliability of DTI in early HD patients and controls. Test-retest reliability, quantified using the intraclass correlation coefficient (ICC), was assessed using region-of-interest (ROI)-based white matter atlas and voxelwise approaches on repeat scan data from 22 participants (10 early HD, 12 controls). T1 data was used to generate further ROIs for analysis in a reduced sample of 18 participants. The results suggest that fractional anisotropy (FA) and other diffusivity metrics are generally highly reliable, with ICCs indicating considerably lower within-subject compared to between-subject variability in both HD patients and controls. Where ICC was low, particularly for the diffusivity measures in the caudate and putamen, this was partly influenced by outliers. The analysis suggests that the specific DTI methods used here are appropriate for cross-sectional research in HD, and give confidence that they can also be applied longitudinally, although this requires further investigation. An important caveat for DTI studies is that test-retest reliability may not be evenly distributed throughout the brain whereby highly anisotropic white matter regions tended to show lower relative within-subject variability than other white or grey matter regions
Longitudinal diffusion tensor imaging shows progressive changes in white matter in Huntington’s disease
This work has been supported by the European Union — PADDINGTON project and all authors, with the exception of RS, SG and HZ receive funding from this project. RS, SG and HZ are supported by the CHDI/High Q Foundation, a not-for-profit organization dedicated to finding treatments for Huntington's disease. This work was undertaken at UCLH/UCL supported by the National Institute for Health Research [NIHR] University College London Hospitals [UCLH] Biomedical Research Centre [BRC].BACKGROUND: Huntington’s disease is marked by progressive neuroanatomical changes, assumed to underlie the development of the disease’s characteristic symptoms. Previous work has demonstrated longitudinal macrostructural white-matter atrophy, with some evidence of microstructural change focused in the corpus callosum. OBJECTIVE: To more accurately characterise longitudinal patterns, we examined white matter microstructural change using Diffusion Tensor Imaging (DTI) data from three timepoints over a 15 month period. METHODS: In 48 early-stage HD patients and 36 controls from the multi-site PADDINGTON project, diffusion tensor imaging (DTI) was employed to measure changes in fractional anisotropy (FA) and axial (AD) and radial diffusivity (RD) in 24 white matter regions-of-interest (ROIs). RESULTS: Cross-sectional analysis indicated widespread baseline group differences, with significantly decreased FA and increased AD and RD found in HD patients across multiple ROIs. Longitudinal rates of change differed between HD patients and controls in the genu and body of corpus callosum, corona radiata and anterior limb of internal capsule. Change in RD in the body of the corpus callosum was associated with baseline disease burden, but other clinical associations were not significant. CONCLUSIONS: We detected subtle longitudinal white matter changes in early HD patients. Progressive white matter abnormalities in HD may not be uniform throughout the brain, with some areas remaining static in the early symptomatic phase. Longer assessment periods across disease stages will help map this progressive trajectory.Peer reviewe
Prescribing in type 2 diabetes patients with and without cardiovascular disease history: A descriptive analysis in the UK CPRD
PURPOSE: Some classes of glucose-lowering medications, including sodium-glucose co-transporter 2 inhibitors (SGLT2is) and glucagon-like peptide 1-receptor agonists (GLP1-RAs) have cardio-protective benefit, but it is unclear whether this influences prescribing in the United Kingdom (UK). This study aims to describe class-level prescribing in adults with type 2 diabetes mellitus (T2DM) by cardiovascular disease (CVD) history using the Clinical Practice Research Datalink (CPRD). METHODS: Four cross-sections of people with T2DM aged 18-90 and registered with their general practice for >1 year on 1st January 2017 (n = 166,012), 1st January 2018 (n = 155,290), 1st January 2019 (n = 152,602) and 31st December 2019 (n = 143,373) were identified. Age-standardised proportions for class use through time were calculated separately in those with and without CVD history and by total number of medications prescribed (one, two, three, four+). An analysis by UK country was also performed. FINDINGS: Around 31% of patients had CVD history at each cross-section. Metformin was the most common treatment (>70% of those with and without CVD had prescriptions across all treatment lines). Overall use of SGLT2is and GLP1-RAs was low, with slightly less use in patients with CVD (SGLT2i: 9.8% and 13.8% in those with and without CVD respectively; GLP1-RA: 4.3% and 4.9%, December 2019). Use of SGLT2is as part of dual therapy was low but rose throughout the study. In January 2017, estimated use was 8.0% (95% CI 6.9-9.1%) and 8.9% (8.6-9.3%) in those with and without CVD. By December 2019 this reached 18.3% (17.0-19.5%) and 21.2% (20.6-21.7%) for those with and without CVD respectively. SGLT2i use as triple therapy increased: 22.7% (21.0-24.4%) and 25.9% (25.2-26.6%) in January 2017 to 41.3% (39.5-43.0%) and 45.5% (44.7-46.3%) in December 2019. GLP1-RA use also increased, but observed usage remained lower than SGLT2 inhibitors. Insulin use remained stable throughout, with higher use observed in those with CVD (16% vs 9.7% Dec 2019). Time trends in England, Wales, Scotland and Northern Ireland were similar, although class prevalence varied. IMPLICATIONS: Although use of SGLT2is and GLP1-RAs has increased, overall usage remains low with slightly lower use in those with CVD history, suggesting there is opportunity to optimise use of these medicines in T2DM patients to manage CVD risk. Insulin use was substantially more prevalent in those with CVD despite no evidence of CVD benefit. Further investigation of factors influencing this finding may highlight strategies to improve patient access to the most appropriate treatments, including those with evidence of cardiovascular benefit
A framework for human microbiome research
A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies
- …
