34 research outputs found

    Multimodel inference for biomarker development: an application to schizophrenia

    Get PDF
    In the present study, to improve the predictive performance of a model and its reproducibility when applied to an independent data set, we investigated the use of multimodel inference to predict the probability of having a complex psychiatric disorder. We formed training and test sets using proteomic data (147 peptides from 77 proteins) from twoindependent collections of first-onset drug-naive schizophrenia patients and controls. A set of prediction models was produced by applying lasso regression with repeated tenfold cross-validation to the training set. We used feature extraction and model averaging across the set of models to form two prediction models. The resulting models clearly demonstrated the utility of a multimodel based approach to make good (training set AUC > 0.80) and reproducible predictions (test set AUC > 0.80) for the probability of having schizophrenia. Moreover, we identified four proteins (five peptides) whose effect on the probability of having schizophrenia was modified by sex, one of which was a novel potential biomarker of schizophrenia, foetal haemoglobin. The evidence of effect modification suggests that future schizophrenia studies should be conducted in males and females separately. Future biomarker studies should consider adopting a multimodel approach and going beyond the main effects of features

    Identification of Stage-Specific Breast Markers using Quantitative Proteomics

    Get PDF
    YesMatched healthy and diseased tissues from breast cancer patients were analyzed by quantitative proteomics. By comparing proteomic profiles of fibroadenoma (benign tumors, three patients), DCIS (noninvasive cancer, three patients), and invasive ductal carcinoma (four patients), we identified protein alterations that correlated with breast cancer progression. Three 8-plex iTRAQ experiments generated an average of 826 protein identifications, of which 402 were common. After excluding those originating from blood, 59 proteins were significantly changed in tumor compared with normal tissues, with the majority associated with invasive carcinomas. Bioinformatics analysis identified relationships between proteins in this subset including roles in redox regulation, lipid transport, protein folding, and proteasomal degradation, with a substantial number increased in expression due to Myc oncogene activation. Three target proteins, cofilin-1 and p23 (increased in invasive carcinoma) and membrane copper amine oxidase 3 (decreased in invasive carcinoma), were subjected to further validation. All three were observed in phenotype-specific breast cancer cell lines, normal (nontransformed) breast cell lines, and primary breast epithelial cells by Western blotting, but only cofilin-1 and p23 were detected by multiple reaction monitoring mass spectrometry analysis. All three proteins were detected by both analytical approaches in matched tissue biopsies emulating the response observed with proteomics analysis. Tissue microarray analysis (361 patients) indicated cofilin-1 staining positively correlating with tumor grade and p23 staining with ER positive status; both therefore merit further investigation as potential biomarkers.Cyprus Research Promotion Foundation, Yorkshire Cancer Researc

    Diagnostic prediction model development using data from dried blood spot proteomics and a digital mental health assessment to identify major depressive disorder among individuals presenting with low mood.

    No full text
    With less than half of patients with major depressive disorder (MDD) correctly diagnosed within the primary care setting, there is a clinical need to develop an objective and readily accessible test to enable earlier and more accurate diagnosis. The aim of this study was to develop diagnostic prediction models to identify MDD patients among individuals presenting with subclinical low mood, based on data from dried blood spot (DBS) proteomics (194 peptides representing 115 proteins) and a novel digital mental health assessment (102 sociodemographic, clinical and personality characteristics). To this end, we investigated 130 low mood controls, 53 currently depressed individuals with an existing MDD diagnosis (established current MDD), 40 currently depressed individuals with a new MDD diagnosis (new current MDD), and 72 currently not depressed individuals with an existing MDD diagnosis (established non-current MDD). A repeated nested cross-validation approach was used to evaluate variation in model selection and ensure model reproducibility. Prediction models that were trained to differentiate between established current MDD patients and low mood controls (AUC = 0.94 ± 0.01) demonstrated a good predictive performance when extrapolated to differentiate between new current MDD patients and low mood controls (AUC = 0.80 ± 0.01), as well as between established non-current MDD patients and low mood controls (AUC = 0.79 ± 0.01). Importantly, we identified DBS proteins A1AG1, A2GL, AL1A1, APOE and CFAH as important predictors of MDD, indicative of immune system dysregulation; as well as poor self-rated mental health, BMI, reduced daily experiences of positive emotions, and tender-mindedness. Despite the need for further validation, our preliminary findings demonstrate the potential of such prediction models to be used as a diagnostic aid for detecting MDD in clinical practice
    corecore