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Abstract
In the present study, to improve the predictive performance of a model and its reproducibility when applied to an
independent data set, we investigated the use of multimodel inference to predict the probability of having a complex
psychiatric disorder. We formed training and test sets using proteomic data (147 peptides from 77 proteins) from two-
independent collections of first-onset drug-naive schizophrenia patients and controls. A set of prediction models was
produced by applying lasso regression with repeated tenfold cross-validation to the training set. We used feature
extraction and model averaging across the set of models to form two prediction models. The resulting models clearly
demonstrated the utility of a multimodel based approach to make good (training set AUC > 0.80) and reproducible
predictions (test set AUC > 0.80) for the probability of having schizophrenia. Moreover, we identified four proteins (five
peptides) whose effect on the probability of having schizophrenia was modified by sex, one of which was a novel
potential biomarker of schizophrenia, foetal haemoglobin. The evidence of effect modification suggests that future
schizophrenia studies should be conducted in males and females separately. Future biomarker studies should consider
adopting a multimodel approach and going beyond the main effects of features.

Introduction
Despite our ever increasing ability to generate data,

many published findings are not reproducible in inde-
pendent data sets1–3. In biological psychiatry, this situa-
tion is further exaggerated by the lack of a biological ‘gold
standard’ diagnoses for psychiatric disorders4,5, which are
still diagnosed based on the evaluation of signs and
symptoms in clinical interviews. One notable limitation of
symptom-based diagnosis is that the boundaries between
disorders can be poorly defined because of overlapping
symptoms and common co-morbidity across psychiatric
disorders, which can result in a layering or commingling

of symptoms6. Consequently, patient groups are biologi-
cally heterogenous4, misdiagnosis is common7 and pre-
diction models attempt to link biological data to a
symptom-based diagnosis4,5.
Nevertheless, although many significant psychiatric

disorder biomarker findings have been reported, only few
have been consistently replicated8,9. This lack of repro-
ducibility is a result of underpowered replication studies
for the small to moderate effect sizes initially reported3,5,
differences in patient selection criteria5 (e.g. age, recency
of diagnosis, sex ratio10, treatment, and comorbidities)
and inconsistencies in methods used to quantify biological
markers. In addition, when model selection is performed
in high-dimensional data, defined as data with more fea-
tures (variables) than subjects, overfitting a model can be
a major issue and be compounded by biologically het-
erogeneous psychiatric patient populations. Overfitting
occurs when the coefficient estimates of the selected
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model depend not only on the underlying relationship of
interest, but also on chance characteristics of the data
analysed. When an overfitted model is applied to new
subjects the predictive performance is reduced. In other
words, the model provides an over-optimistic assessment
of the predictive performance when based on the data to
which the model was fitted.
Despite the heterogeneity of psychiatric patients, mod-

els with a more reproducible predictive performance can
be achieved by taking into account model selection
uncertainty. Model selection is often considered to be a
process of selecting a single model from a set of all pos-
sible models that is judged to be the ‘best’ model for
making inferences from the analysed data11,12. Any
uncertainty in model selection, for example, resulting
from a small change in the data set, is ignored once the
best model has been found. In the present study, rather
than making predictions based on a single-best model
selected from a data set, we adopted a multimodel
approach to make predictions for the probability of having
schizophrenia based on a set of models to allow for any
uncertainty in model selection. The schizophrenia data
analysed consisted of two-independent mass spectrometry
(MS) multiple reaction monitoring (MRM) proteomic
data sets (147 peptides from 77 proteins) of first-onset
drug-naive schizophrenia patients and controls13,14 that
were used in the present study as training and test sets.
The sensitivity of model selection to small changes in the
training data was evaluated by model selection using least
absolute shrinkage and selection operator (lasso) regres-
sion with the resampling approach of repeated tenfold
cross-validation15. In the absence of one model being
superior to the other selected models, we used feature
extraction and model averaging across the set of models
to form the prediction model. This approach improved
the generalizability of the model, that is, it reduced
overfitting and provided more reproducible inference. We
then attempted to validate the model predictive perfor-
mance by applying the model to an independent test set.

Materials and methods
Subjects
The Cologne study (referred to as the ‘training set’), as

previously described13, consisted of serum samples from
60 first-onset drug-naive schizophrenia patients and 79
age and sex matched controls recruited by the Depart-
ment of Psychiatry, University of Cologne (Supplementary
Table 1). The Rotterdam study (referred to as the ‘inde-
pendent test set’), as previously described14, consisted of
nine first-onset drug-naive male schizophrenia patients
and 12 male controls recruited by the Erasmus Medical
Centre in Rotterdam (Supplementary Table 1). Schizo-
phrenia was diagnosed based on the Diagnostic and Sta-
tistical Manual of Mental Disorders IV (DSM-IV)16. The

ethical committees of the medical faculties of the
respective universities approved the protocols of the
study. Informed consent was given in writing by all par-
ticipants and clinical investigations were conducted
according to the Declaration of Helsinki.

Targeted protein quantification
Serum samples were prepared in a 96-well plate format

as described previously17. Briefly, serum samples were
diluted with ammonium bicarbonate. Then, disulphide
bond reduction and cysteine alkylation were performed
using Dithiothreitol (DTT) and Iodoacetamide (IAA),
respectively. Proteins were digested overnight using
trypsin (see Supplementary Information). Isotopically
labelled internal standard peptides were spiked into serum
samples prior to MS run. Quality control (QC) samples
were used in this study to monitor method performance
and instrument stability (see Supplementary Information).
In this study, a total of 101 proteins (172 peptides), the

majority previously associated with psychiatric disorders,
were selected. Three to four interference free transitions
were selected for each targeted peptide as described pre-
viously17. Tryptic digested peptides were monitored using
an Agilent 1290 liquid chromatography (LC) system
coupled with 6495 Triple Quadrupole mass spectrometer
equipped with jet-stream nano ESI source operated in
positive mode. MS data were acquired in MRM mode.
The chromatographic separation was carried out on
Agilent AdvanceBio Peptide Map column (2.1 × 150mm
2.7-micron) at 50 °C. Peptides were eluted over a linear
gradient from 3 to 30% acetonitrile in 0.1% formic acid in
45min.

Statistical analysis
Data pre-processing and quality control
We processed raw mass spectrometry (MS) files using

the Skyline software package (Version 3.1.0)18. We
manually checked peaks and when necessary, adjusted
peak integrations accordingly. The endogenous and
internal standard peptide-transition peak areas were
estimated and exported as a comma delimited data file for
statistical analysis in R (Version 3.4.4)19. The MS data pre-
processing is described in Supplementary Information.

Model selection
We used lasso regression with repeated tenfold cross-

validation to reduce overfitting and to investigate model
selection uncertainty in the training set.

Tenfold cross-validation
Tenfold cross-validation is a commonly used resam-

pling approach to reduce the problem of overfitting11. The
data are randomly split into tenfolds. We hold out each
fold one at a time, train on the remaining data and predict

Cooper et al. Translational Psychiatry            (2019) 9:83 Page 2 of 10    83 



the held out observations for each value of the regular-
ization parameter – selecting the regularization parameter
that minimises the cross-validation deviance (classifica-
tion error). The model, as defined by the regularization
parameter, is then fit to the entire data set11. We
repeatedly applied tenfold cross-validation 100 times to
determine how sensitive model selection was to small
changes in the training set (overfitting). Note that changes
in the training set result from the data being randomly
split into tenfolds for each application of tenfold cross-
validation.

Lasso regression
Lasso regression is a penalized regression approach that

reduces overfitting by placing a constraint on the sum of
the absolute values of the regression coefficients, which
shrinks the coefficients, a process referred to as regular-
ization or shrinkage, and allows poor predictors to be
shrunken exactly to zero (variable selection)20. Shrinkage
often improves the prediction accuracy11. The constraint
(also known as the regularization parameter, shrinkage
parameter or penalty) was selected using tenfold cross-
validation. Lasso regression with tenfold cross-validation
was conducted using the R package glmnet15,20. We set
the elastic-net penalty, α, that bridges the gap between
lasso (α= 1, the default) and ridge regression (α= 0), to
0.9 for numerical stability15,20.

Akaike information criterion
We adopted a model averaging approach using the

Akaike information criterion (AIC) weights as described
in Burnham and Anderson11,12. We calculated the AIC for
each model selected by lasso regression with tenfold
cross-validation. The AIC is a measure of how well a
model fits the data relative to the other possible models
given the data analysed and favours fewer parameters21.
The model with the lowest AIC is the best model
approximating the outcome of interest. AIC can be
expressed as:

AIC ¼ �2ðlog likelihoodÞ þ 2K ;

where K= number of model parameters and log-
likelihood is a measure of model fit12. In this study, as
n/K ≤ 40 for sample size n and the model with the largest
value of K, we used the second-order bias correction
version of the AIC:

AICc ¼ �2ðlog likelihoodÞ þ 2K þ 2KðK þ 1Þ
n� K � 1

;

AICc ¼ AICþ 2KðK þ 1Þ
n� K � 1

;

where n= sample size, K= number of model parameters
and log-likelihood is a measure of model fit12.

Akaike weights
After model selection, we calculated the Akaike weights,

wm, for each model:

wm ¼ exp � 1
2 AICm

� �

PM
j¼1 exp � 1

2 AICj
� � ;

where wm and AICm are, respectively, the Akaike weight
and AICc for model m and AICj is the AICc for model j=
1 to M. The denominator normalizes the Akaike weights,
so that

XM

m¼1

wm ¼ 1:

The Akaike weights can be interpreted as model prob-
abilities or the ‘weight of evidence’ in favour of model m
being the best model based on the available data set12.
The Akaike weights can be used to quantify the evidence
for the importance of each feature in the set of selected
models11. The relative importance of feature f is the
summation of the Akaike weights across the set of
selected models which include feature f11. The resulting
relative feature importance, between 0 and 1, allows fea-
tures to be ranked by their importance and can be
interpreted as the probability of the feature being included
in the best model for the data. The relative importance of
subsets of features occurring together can also be
quantified11.

Feature extraction
We defined two prediction models, the first based the

frequency of feature selection (inclusion fraction > 0.80)
and the second based on the probability that a feature is
included in the best model for the data (inclusion prob-
ability > 0.90). Both models have the added advantage of
further reducing overfitting by excluding features less
frequently selected or with low inclusion probabilities
(Akaike weights). We note that both the inclusion fraction
and probability thresholds were determined before the
analysis was conducted.

Model averaging
If one of the selected models was clearly superior to the

other selected models [for example, it has a probability
that it is the best model for the data, w > 0.911], then
inference could be based on that model alone. However,
when model selection uncertainty is evident, inference
based on a set of models can result in more reproducible
inference. To obtain more reproducible predictions of
schizophrenia diagnosis, we adopted a model averaging
approach, specifically, for a feature of interest, we esti-

mated their weighted average coefficient, bβ, across a set of
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models derived from applying lasso regression with
repeated tenfold cross-validation to the training data set.

bβ ¼ PM

j¼1
wjβ̂j, where wj and β̂j are, respectively, the Akaike

weight and coefficient estimates for a feature of interest
in model j and bβ is the weighted average of β̂j over models
j= 1 to M11. As all models are considered, those models
not containing the feature of interest contribute zero to
the weighted average estimate which results in the coef-
ficient shrinking towards zero.

Model selection including first-order interactions with sex
As the two prediction models had a substantially better

predictive performance for males than for females (Table
2a), we wanted to investigate whether the effect of protein
abundance on the probability of having schizophrenia was
modified by the sex of the individual. To investigate effect
modification, we needed to consider first-order interac-
tions between protein abundance and sex in model
selection. If we consider a simple logistic model

logit πð Þ ¼ αþ β1X1 þ β2X2;

where Pr(Y= 1)= π, logit(π) is the logit function of this
probability [natural log of π/(1 – π)], α is the intercept
and, β1 and β2 are coefficients for features X1 and X2.
Typically, a product term X1X2 is added to the model to
allow for an interaction

logit πð Þ ¼ αþ β1X1 þ β2X2 þ β3X1X2:

The coefficient of the product term, β3, reflects inter-
action as a departure from the multiplicative effects, in
other words, the combined effect of X1 and X2 is larger (or
smaller) than the product of their individual main effects.
To consider interactions between protein abundance

and sex in the model selection with repeated tenfold
cross-validation, we adopted the glinternet approach of
Lim and Hastie22. Glinternet is based on group lasso23

and importantly, ensures hierarchically well formulated
models, that is, an interaction can only be selected if both
of its main effects are selected22. In other words, if an
interaction term is selected and main effects have not, the
main effects will also be selected. We used the R package
glinternet22.

Predictive performance
Predictive performance was evaluated using the area

under the receiver operating characteristic (ROC) curve.
The area under the curve (AUC) measures the extent to
which a model’s predicted probability agrees with the
observed outcome, that is the presence or absence of an
event. The AUC is the probability that a randomly chosen

patient with the event is rated/ranked higher than a ran-
domly chosen patient without the event. A model per-
forming no better than random will have an AUC of 0.50.
(AUC: 0.9–1= excellent; 0.8–0.9= good; 0.7–0.8= fair;
0.6–0.7= poor; 0.5–0.6= fail). The AUC was calculated
using the R package ROCR24.

Pathway analysis
Biological process pathway analysis was carried out

using Gene Ontology and PANTHER25. UniProt acces-
sion numbers of proteins corresponding to the peptides
selected in the final model were uploaded to http://
geneontology.org and all Homo sapiens genes in the
database were used as a reference list. Fisher’s exact with
false discovery rate (FDR) multiple test correction was
used for determining pathway significance.

Results
After MS data pre-processing, there were 77 proteins

(147 peptides) measured in a training set of 60 first-onset
drug-naive schizophrenia patients and 77 controls, and in
a male-only independent test set of nine first-onset drug-
naive schizophrenia patients and 12 controls (Supple-
mentary Table 1).

Model selection
Model selection using lasso regression with repeated

tenfold cross-validation revealed some uncertainty in
model selection in the training set (Fig. 1). Based on the
features selected, there were 11 unique models (Sup-
plementary Table 2) with, on average, a good predictive
performance (AUC= 0.81; Fig. 1a). The number of
features selected ranged from 3 to 33, with eight on
average (Fig. 1b). Although 33 features out of 149 (147
peptides, sex, and age) were selected at least once
(Fig. 1c; Supplementary Table 3), 25 of these features
were selected less than 10 times out of 100, consistent
with limited model overfitting. The remaining eight
features were selected more than 50 times, six of which
were selected more than 80 times out of 100 (Table 1).
There was not a single best model approximating schi-
zophrenia status in the training set; the most frequently
selected model had eight features and was selected 51
times out of 100.

Akaike model weights
Akaike weights were calculated for each of the

100 selected models. As there were 11 unique models, we
summed the weights by each unique model to estimate
the probability of it being the best model approximating
the probability of having schizophrenia in the training set.
Despite some uncertainty in model selection, the three
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models with the highest probability of being the best
model had a combined probability of over 0.95; five
models had a combined probability of over 0.99 (Sup-
plementary Table 2). The most frequently selected model

had the highest single model probability of 0.80. We note
that frequency of selection does not necessarily equate to
the probability of being the best model for the data ana-
lysed (Figs 1d and 2f; Supplementary Tables 1 and 3).
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Fig. 1 A summary of the 100 models selected using lasso regression with repeated cross-validation. a A bar chart summarizing the AUCs for
each model. AUC: Fail 0.5–0.6; Poor 0.6–0.7; Fair 0.7–0.8; Good 0.8–0.9; and, 0.9–1.00 Excellent. b A bar chart summarizing the number of features
selected in each model. c An inclusion fraction plot summarizing the proportion of times each feature was selected in a model. One hundred and
seventeen features out of 149 (147 peptides, sex, and age) were not selected in the 100 models. d A plot of inclusion frequencies and probabilities for
the 32 selected features

Table 1 A summary of the model averaged coefficients for the two models, the first consisting of six features with an
inclusion fraction >0.8 and the second consisting of eight features with an inclusion probability (relative feature
importance) >0.9

Inclusion fraction Inclusion probability Mean coefficient Weighted mean coefficient Model

(Intercept) – – 0.792 1.027 1, 2

APOA4 IDQNVEELK 1.00 1.000 −0.238 −0.320 1, 2

APOC3 GWVTDGFSSLK 1.00 1.000 −0.287 −0.334 1, 2

HPT VTSIQDWVQK 1.00 0.998 0.266 0.287 1, 2

IC1 TNLESILSYPK 0.93 0.996 0.141 0.196 1, 2

APOA2 SPELQAEAK 0.89 1.000 −0.248 −0.390 1, 2

ITIH4 GPDVLTATVSGK 0.83 0.992 0.0932 0.153 1, 2

ANT3 LPGIVAEGR 0.67 0.965 0.0382 0.0775 2

APOH EHSSLAFWK 0.59 0.949 0.0320 0.0622 2

The mean coefficient is the mean of the coefficients for the feature of interest based on all of the models. The weights used for the weighted mean coefficient are the
model probabilities (Akaike weights)
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Model averaging
We defined two models using feature extraction

(Table 1), the first consisting of six features with an
inclusion fraction >0.8 and the second consisting of
eight features with an inclusion probability (relative
feature importance) >0.9. Model averaging for each
feature of interest was conducted across all 100 selec-
ted models. After model averaging, the first model (six
features) was applied to the training set and then to the
independent test set, both had a good predictive per-
formance, AUC of 0.81 and 0.88, respectively
(Table 2a). A similar predictive performance was

obtained when the second model (eight features) was
applied to the training set and then to the independent
test set, AUC of 0.82 and 0.92, respectively (Table 2a).
To investigate the higher predictive performance in the

male-only independent test set, we then applied the two
models to training set males and females separately. We
found that the predictive performance was substantially
higher for males than for females (Table 2a). We note that
sex had not been selected in any of the 100 models
(Supplementary Tables 1 and 2) and that first-order
interactions between features and sex had not been con-
sidered in the model selection.
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Fig. 2 A summary of the 100 models selected using glinternet with repeated cross-validation. a A bar chart summarizing the AUCs for each
model. AUC: Fail 0.5–0.6; Poor 0.6–0.7; Fair 0.7–0.8; Good 0.8–0.9; and, 0.9–1.00 Excellent. b A bar chart summarizing the number of features selected
in each model. c A bar chart summarizing the number of first-order interactions with sex selected in each model. d An inclusion fraction plot
summarizing the proportion of times each feature was selected in a model. e An inclusion fraction plot summarizing the proportion of times each
first-order interactions with sex was selected in a model. One hundred and twenty six features out of 149 (147 peptides, sex, and age) were not
selected in the 100 models. f A plot of inclusion frequencies and probabilities for the selected features and interactions
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Model selection considering first-order interactions with
sex
To investigate potential differences between males and

females, we adopted the glinternet approach of Lim and
Hastie22 to consider first-order interactions between
protein abundance and sex in model selection with
repeated tenfold cross-validation. Importantly, this
approach ensures that the model obeys strong hierarchy,
that is, if an interaction is selected, both of its main effects
will also be selected22,26. We only considered first-order
interactions with sex.
After considering interactions in model selection, there

was less uncertainty in model selection. Based on the
features selected, there were five unique models (Sup-
plementary Table 4) with, on average, a good predictive
performance (AUC= 0.87; Fig. 2a). Notably, all five of the
unique models included interaction terms. The vast
majority of selected features (19/23; Fig. 2d) and inter-
actions (5/7; Fig. 2e) were selected at least 98 times out of
100. The two APOC3 peptides were selected in every
model despite a strong linear relationship between them
(correlation coefficient r= 0.87 and P < 2.2 × 10−16). The
eight features selected in the earlier analysis (Table 1)
were selected in every model, but none had interactions
with sex selected (Supplementary Table 4). The five fre-
quently selected interactions suggest that the sex of a
subject was modifying the effects of peptides from APOE,

A2AP, HBA, HBG1, and SHBG on the probability of
having schizophrenia. The difference between males and
females in the abundance of these five peptides in schi-
zophrenia patients and controls is shown in Supplemen-
tary Figure 3. Consequently, model selection should be
conducted in males and females separately to allow for
biological differences between the sexes. However, in the
present study, the training set was too small to conduct
model selection in males and females separately.
As in the previous analysis, we defined two models

(Table 3), the first consisting of 17 features and five
interactions with an inclusion fraction of >0.8 and the
second consisting of 13 features and three interactions
with an inclusion probability >0.9. Model averaging for
each feature of interest was conducted across all
100 selected models. After model averaging, the first
model was applied to the training set and then to the
independent test set. The marked difference seen in the
previous analysis was no longer evident and both had a
good predictive performance, AUC of 0.86 and 0.89,
respectively, demonstrating the reproducibility of the
model (Table 2b). A similar predictive performance was
obtained when the second model was applied to the
training set and then to the independent test set, AUC of
0.85 and 0.82, respectively (Table 2b). Despite the good
predictive performance and the reproducibility, when we
applied the two models to training set males and females

Table 2 A summary of predictive performance in the training and independent test sets of the prediction models with
averaged coefficients

Training set (Cologne) Independent test set

(Rotterdam)

Schizophrenia patients 60 9

Controls 77 12

(a) Training set Independent test set

Number of features AUC AUC

Model with >0.80 inclusion fraction 6 0.807

Males only 0.851

Females only 0.751

Males only 0.880

Model with relative feature importance

>0.90

8 0.821

Males only 0.863

Females only 0.773

Males only 0.917

(b)

Model with >0.80 inclusion fraction 17 with 5 first-order interactions

with sex

0.858

Males only 0.890

Females only 0.819

Males only 0.889

Model with relative feature importance

>0.90

13 with 3 first-order interactions

with sex

0.854

Males only 0.887

Females only 0.818

Males only 0.815

Model selection (a) did not consider first-order interactions with sex and (b) did allow for first-order interactions with sex
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separately, although marginally less than in the previous
analysis, the predictive performance remained sub-
stantially better for males than for females (Table 2b).

Discussion
Seventy-seven proteins (147 peptides) were measured in

serum samples from two-independent collections of first-
onset drug-naive schizophrenia patients and matched
controls using mass spectrometry. We were able to
demonstrate that multimodel inference can provide
models for the probability of having schizophrenia with a
good (training set AUC > 0.8) and reproducible predictive
performance (test set AUC > 0.8; Table 2). A notable
advantage of the multimodel approach, particularly

evident from the set of selected models (Supplementary
Tables 1 and 3), is that it reduces the risk of selecting one
of the less probable models by chance. In addition, feature
extraction using the inclusion fractions or probabilities to
select features for the model has the effect of further
limiting model overfitting. Although we used both
inclusion fractions and probabilities for feature selection,
the latter is a more sensible approach as it represents how
likely each feature is to be included in the best model for
the data analysed.
After observing the differences in the prediction per-

formance between males and females in the training set
(Table 2a), extending the analysis to include first-order
interactions was essential to determine whether the effect

Table 3 A summary of the model averaged coefficients for the two models, the first consisting of 17 features and five
interactions with an inclusion fraction of >0.8 and the second consisting of 13 features and three interactions with an
inclusion probability (relative feature importance) >0.9

UniProt accession

number27
Main effects Inclusion

fraction

Inclusion

probability

Mean

coefficient

Weighted mean

coefficient

Model

(Intercept) – – 1.5400 1.1300 1, 2

Female 1.00 1.000 0.0356 0.01180 1, 2

P00738 HPT VTSIQDWVQK 1.00 1.000 0.2800 0.28100 1, 2

P05155 IC1 TNLESILSYPK 1.00 1.000 0.1720 0.15700 1, 2

Q14624 ITIH4 GPDVLTATVSGK 1.00 1.000 0.2390 0.17600 1, 2

P04278 SHBG IALGGLLFPASNLR 1.00 1.000 0.1260 0.08490 1, 2

P01008 ANT3 LPGIVAEGR 1.00 1.000 0.0540 0.04700 1, 2

P02652 APOA2 SPELQAEAK 1.00 1.000 −0.4380 −0.35800 1, 2

P06727 APOA4 IDQNVEELK 1.00 1.000 −0.4580 −0.38300 1, 2

P02656 APOC3 GWVTDGFSSLK 1.00 1.000 −0.3240 −0.33900 1, 2

P02656 APOC3 DALSSVQESQVAQQAR 1.00 1.000 −0.0998 −0.04730 1, 2

P02649 APOE LEEQAQQIR 1.00 1.000 −0.1920 −0.12900 1, 2

P02749 APOH EHSSLAFWK 1.00 1.000 0.1990 0.12900 1, 2

P08697 A2AP DFLQSLK 0.98 0.999 −0.0269 −0.03220 1, 2

O75636 FCN3 YGIDWASGR 0.98 0.248 0.0552 0.01090 1

P02765 FETUA HTLNQIDEVK 0.98 0.248 −0.1120 −0.02180 1

P69905 HBA MFLSFPTTK 0.98 0.248 −0.0120 −0.00228 1

P69891 HBG1 MVTAVASALSSR 0.98 0.248 −0.0101 −0.00200 1

First-order interactions with sex

P04278 SHBG IALGGLLFPASNLR 1.00 1.000 −0.3180 −0.21100 1, 2

P02649 APOE LEEQAQQIR 1.00 1.000 0.5510 0.37700 1, 2

P08697 A2AP DFLQSLK 0.98 0.999 0.0805 0.09690 1, 2

P69905 HBA MFLSFPTTK 0.98 0.248 0.0514 0.00930 1

P69891 HBG1 MVTAVASALSSR 0.98 0.248 0.0425 0.00817 1

The mean coefficient is the mean of the coefficients for the feature of interest based on all of the models. The weights used for the weighted mean coefficient are the
model probabilities (Akaike weights). The eight features selected in the earlier analysis (Table 1), are shown in bold. HBA and HBG1 are haemoglobin subunits alpha
and gamma-1, respectively
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of protein abundance on the probability of having schi-
zophrenia was modified by sex. As the vast majority of the
selected models contained the same five interactions
(Supplementary Table 4), there was sufficient evidence of
modification by sex, suggesting that future schizophrenia
biomarker studies should ideally be conducted in males
and females separately. This would allow for biological
differences underpinning the reported sex differences in
schizophrenia to be better utilized in the prediction
model. Reported sex differences include males having an
earlier onset, more negative and less depressive symptoms
while females experience more emotional and psychotic
symptoms28,29.
Despite concerns about the impact of symptom-based

diagnosis of schizophrenia on model selection uncer-
tainty, resampling using repeated tenfold cross-validation
revealed a large degree of stability in the features selected
(Table 2; Fig. 1c) that was notably improved with the
inclusion of first-order interactions with sex (Table 3; Fig.
2d, e). The similar participant selection criteria, particu-
larly the recruitment of first-onset drug-naive schizo-
phrenia patients, in the training and independent test sets
would have contributed to this stability (Supplementary
Table 1; see Methods).
As 30 of the 77 proteins analysed have been previously

associated with schizophrenia (Supplementary Table 6), it
was re-assuring, although not unexpected, that the
majority of the selected proteins (12 of 14; Table 3) have
been previously associated with schizophrenia30–33 with
the most robust finding for increased HPT levels in
schizophrenia patients compared to controls30,34–37. In
addition, the most significant pathways related to the
selected proteins, namely altered acute inflammatory
response [involving ANT3, APOA2, A2AP, FETUA, HPT,
and ITIH4; gene ontology (GO) term GO:0002526, false
discovery rate (FDR)= 1.6 × 10–7] and ultra-low density
lipoprotein transport (APOA2, APOA4, APOC3 and
APOE; GO:0034378, GO:0034371 and GO:0034370, FDR
< 1.0 × 10−6) in schizophrenia, are consistent with pre-
vious reports36,38. The fact that proteins from these
pathways also correlate with disease psychopathology
scores, in particular-negative symptoms39–41, suggests
that these processes might mechanistically underpin cer-
tain aspects of schizophrenia pathophysiology and as such
constitute promising drug targets for add-on treatments.
Model selection using glinternet to allow for first-order

interactions identified five peptides from APOE, A2AP,
HBA, HBG1 and SHBG (Table 3) whose effect on the
probability of having schizophrenia was modified by sex.
Interestingly, neither sex nor any of the five protein
peptides were selected in the initial model selections that
did not consider interactions (Supplementary Table 3).
While APOE, A2AP, and SHBG have been previously
implicated in schizophrenia33,42,43, the association with

HBA and HBG1 has not been reported before. HBA and
HBG1 are haemoglobin subunits alpha and gamma-1,
respectively. Although subunit alpha may belong to dif-
ferent types of haemoglobin (e.g. A, A2 and F), the
selection of peptides from subunits alpha and gamma-1 by
the algorithm, with the latter subunit specific to foetal
haemoglobin (haemoglobin F or haemoglobin α2γ2), as
well as a moderate linear relationship between the sub-
units (r= 0.57 and P= 2.0 × 10−7), indicate that this
findings may represent foetal haemoglobin44.
There are several limitations to the present study. First,

the independent training and test sets had a relatively
small sample size with limited demographic and clinical
data measured. Second, although a male-only indepen-
dent test set was not ideal, it proved to be insightful with
regard to the sex differences in the protein effects on the
probability of having schizophrenia. Had the independent
test set consisted of males and females, the reproducibility
of the prediction model would have depended on how
close the sex ratio was between the two data sets and the
sex differences would have been less evident. Finally, we
have fitted models to distinguish patients from controls,
although this may not reflect the relevant clinical popu-
lation for a schizophrenia diagnostic test, it is an appro-
priate first step towards distinguishing between
individuals at an ultra-high risk of developing schizo-
phrenia who do and do not develop the disorder over a set
time period.
In conclusion, we have demonstrated the utility of a

multimodel-based approach to make good and repro-
ducible predictions for a complex psychiatric disorder.
We have also demonstrated the importance of consider-
ing first-order interactions in model selection and propose
that future biomarker studies of schizophrenia should be
conducted in males and females separately.
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