23 research outputs found

    Long-term decoding of movement force and direction with a wireless myoelectric implant

    Get PDF
    Objective. The ease of use and number of degrees of freedom of current myoelectric hand prostheses is limited by the information content and reliability of the surface electromyography (sEMG) signals used to control them. For example, cross-talk limits the capacity to pick up signals from small or deep muscles, such as the forearm muscles for distal arm amputations, or sites of targeted muscle reinnervation (TMR) for proximal amputations. Here we test if signals recorded from the fully implanted, induction-powered wireless Myoplant system allow long-term decoding of continuous as well as discrete movement parameters with better reliability than equivalent sEMG recordings. The Myoplant system uses a centralized implant to transmit broadband EMG activity from four distributed bipolar epimysial electrodes. Approach. Two Rhesus macaques received implants in their backs, while electrodes were placed in their upper arm. One of the monkeys was trained to do a cursor task via a haptic robot, allowing us to control the forces exerted by the animal during arm movements. The second animal was trained to perform a center-out reaching task on a touchscreen. We compared the implanted system with concurrent sEMG recordings by evaluating our ability to decode time-varying force in one animal and discrete reach directions in the other from multiple features extracted from the raw EMG signals. Main results. In both cases, data from the implant allowed a decoder trained with data from a single day to maintain an accurate decoding performance during the following months, which was not the case for concurrent surface EMG recordings conducted simultaneously over the same muscles. Significance. These results show that a fully implantable, centralized wireless EMG system is particularly suited for long-term stable decoding of dynamic movements in demanding applications such as advanced forelimb prosthetics in a wide range of configurations (distal amputations, TMR).German Federal Ministry for Education and Reseach (BMBF) grant No, 16SV3695, 16SV3699, 16SV3697 and 01GQ1005C, DFG Deutsche Forschungsgemeinschaft grant No. GA1475-C

    Surgical construction, conditioning and activation of functional muscle grafts

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Activities with a Microprocessor-Controlled Leg Brace for Patients with Lower Limb Paralysis: A Series of Case Studies

    No full text
    Lower limb paralysis often leads to depreciation in mobility of the affected individuals. Computer-controlled leg brace systems open up new possibilities for these patients, by improving the safety of mobility tasks in everyday life, especially when walking on uneven terrain, inclined surfaces, steps and stairs. This paper introduces such a system. To investigate the use of device functionalities in the patient’s everyday environment, the knee joint of the brace was configured to store data of various sensors, measuring motion with a high temporal resolution over several weeks of home use. Results from a clinical trial including 8 patients with different pathologies show that the system was used by the patients for more than 10 hours per day on average, taking more than 2,100 steps per day. Maximum use time was more than 20.24 hours with 12,609 steps per day. An implemented yielding function to support walking down slopes or stairs was used by all patients. This function can also catch the user in case of stumbling, which on average happened 3 times per day. Seven out of eight patients reported improvements in quality and safety of many activities in daily life using the novel system, compared to their previous device

    Ultra-Low-Power Digital Filtering for Insulated EMG Sensing

    No full text
    Myoelectric prostheses help amputees to regain independence and a higher quality of life. These prostheses are controlled by state-of-the-art electromyography sensors, which use a conductive connection to the skin and are therefore sensitive to sweat. They are applied with some pressure to ensure a conductive connection, which may result in pressure marks and can be problematic for patients with circulatory disorders, who constitute a major group of amputees. Here, we present ultra-low-power digital signal processing algorithms for an insulated EMG sensor which couples the EMG signal capacitively. These sensors require neither conductive connection to the skin nor electrolytic paste or skin preparation. Capacitive sensors allow straightforward application. However, they make a sophisticated signal amplification and noise suppression necessary. A low-cost sensor has been developed for real-time myoelectric prostheses control. The major hurdles in measuring the EMG are movement artifacts and external noise. We designed various digital filters to attenuate this noise. Optimal system setup and filter parameters for the trade-off between attenuation of this noise and sufficient EMG signal power for high signal quality were investigated. Additionally, an algorithm for movement artifact suppression, enabling robust application in real-world environments, is presented. The algorithms, which require minimal calculation resources and memory, are implemented on an ultra-low-power microcontroller.(VLID)344808

    Patient Motion Using a Computerized Leg Brace in Everyday Locomotion Tasks

    No full text
    Exoskeletal systems are becoming a rehabilitation standard of care for persons with lower limb paralysis. As muscular dysfunctions affect a heterogeneous patient group, each individual develops their own strategy to negotiate everyday locomotion challenges. This paper introduces a microprocessor controlled orthotic system that passively supports people with lower limb paralyses in their everyday locomotion tasks while incorporating the user as the highest control entity. A clinical study with seven patients with a range of leg pareses investigated the functionality and usage of the system while capturing the mechanical stress on the device. Data from the knee joint was recorded in locomotion tasks including level walking, ramp, and stair negotiation. For all patients, the measurements demonstrate that the motion for level walking was close to the motion of healthy individuals. In other tasks, variations between the patients were large with respect to motion kinematics, power, and torque requirements. As the control concept supported individualized motion patterns, patients perceived the system functionality as intuitive. The mechanically most demanding task was stair descent with a peak torque of 1.47 Nm/kg and peak dissipative power up to 2.67 W/kg. Intra-subject variability makes prediction of movements and loads challenging

    Energy Recuperation at the Hip Joint for Paraplegic Walking: Interaction Between Patient and Supportive Device

    No full text
    For patients with lower limb paralysis, wearable robotic systems are becoming increasingly important for regaining mobility. The actuation of these systems is challenging because of the necessity to deliver high power within very limited space. However, not all patients need full support, as many patients have residual muscle function that can be applied for locomotion. This work introduces a microprocessor-controlled leg (hip-knee-ankle-foot) orthosis (mpLeg) with energy recuperation capabilities at the hip joint. The system redistributes motion energy generated by the patient during walking. In stance phase of walking, energy is stored in an elastic element at the hip joint. This energy can be released by computer control later in the gait phase, to support swing phase motion. This work aims at investigating the influence of the elastic element in the orthotic hip joint on a patient’s motion. Experiments conducted with a patient suffering from incomplete paraplegia demonstrated that the motion pattern during walking improved with activated energy recuperation. This observation was made over a wide range of system parameters. The patient used the energy recuperation capabilities of the mpLeg with up to 4.1 J recuperated energy per step, which resulted in a more natural swing phase motion during walking. Therefore energy recuperation at the hip joint is a feasible technology for future supportive devices

    An Insulated Flexible Sensor for Stable Electromyography Detection : Application to Prosthesis Control

    No full text
    Electromyography (EMG), the measurement of electrical muscle activity, is used in a variety of applications, including myoelectric upper-limb prostheses, which help amputees to regain independence and a higher quality of life. The state-of-the-art sensors in prostheses have a conductive connection to the skin and are therefore sensitive to sweat and require preparation of the skin. They are applied with some pressure to ensure a conductive connection, which may result in pressure marks and can be problematic for patients with circulatory disorders, who constitute a major group of amputees. Due to their insulating layer between skin and sensor area, capacitive sensors are insensitive to the skin condition, they require neither conductive connection to the skin nor electrolytic paste or skin preparation. Here, we describe a highly stable, low-power capacitive EMG measurement set-up that is suitable for real-world application. Various flexible multi-layer sensor set-ups made of copper and insulating foils, flex print and textiles were compared. These flexible sensor set-ups adapt to the anatomy of the human forearm, therefore they provide high wearing comfort and ensure stability against motion artifacts. The influence of the materials used in the sensor set-up on the magnitude of the coupled signal was demonstrated based on both theoretical analysis and measurement.The amplifier circuit was optimized for high signal quality, low power consumption and mobile application. Different shielding and guarding concepts were compared, leading to high SNR.(VLID)344807

    Functional electrical stimulation-supported interval training following sensorimotor-complete spinal cord injury : a case series

    No full text
    Objective. To investigate the effect of interval training supported by Functional Electrical Stimulation (FES) on ambulation ability in complete spinal cord injury (SCI). Methods. We trained four men with sensorimotor-complete (ASIA A) SCI, who achieved gait through FES of the quadriceps femoris, gluteus maximus, and common peroneal nerve on each side on a motorized treadmill. Training involved progressive interval walking exercise, consisting of periods of activity followed by equal periods of rest, repeated until muscle fatigue. We used time to muscle fatigue during continuous treadmill ambulation as the primary outcome measure. We also recorded the patterns of incremental stimulation for all training and testing sessions. Results. All subjects increased their ambulation capacity; however, the responses varied from subject to subject. Some subjects increased the total distance walked by as much as 300% with progressive improvement over the entire training period; however, others made more modest gains and appeared to reach a performance plateau within a few training sessions. Conclusions. FES-supported interval training offers a useful and effective strategy for strength-endurance improvement in the large muscle groups of the lower limb in motor-complete SCI. We believe that this training protocol offers a viable alternative to that of continuous walking training in people with SCI using FES to aid ambulation
    corecore