930 research outputs found

    Ouabain-induced cytoplasmic vesicles and their role in cell volume maintenance

    Get PDF
    Cellular swelling is controlled by an active mechanism of cell volume regulation driven by a Na+/K+-dependent ATPase and by aquaporins which translocate water along the osmotic gradient. Na+/K+-pump may be blocked by ouabain, a digitalic derivative, by inhibition of ATP, or by drastic ion alterations of extracellular fluid. However, it has been observed that some tissues are still able to control their volume despite the presence of ouabain, suggesting the existence of other mechanisms of cell volume control. In 1977, by correlating electron microscopy observation with ion and water composition of liver slices incubated in differentmetabolic conditions in the presence or absence of ouabain, we observed that hepatocytes were able to control their volume extruding water and recovering ion composition in the presence of ouabain. In particular, hepatocytes were able to sequester ions and water in intracellular vesicles and then secrete themat the bile canaliculus pole.We named this “vesicularmechanismof cell volume control.” Afterward, thismechanism has been confirmed by us and other laboratories in several mammalian tissues.This review summarizes evidences regarding this mechanism, problems that are still pending, and questions that need to be answered. Finally, we shortly review the importance of cell volume control in some human pathological conditions

    Sirtuins 1–7 expression in human adipose-derived stem cells from subcutaneous and visceral fat depots: influence of obesity and hypoxia

    Get PDF
    The sirtuin family comprises seven NAD+-dependent deacetylases which control the overall health of organisms through the regulation of pleiotropic metabolic pathways. Sirtuins are important modulators of adipose tissue metabolism and their expression is higher in lean than obese subjects. At present, the role of sirtuins in adipose-derived stem cells has not been investigated yet. Therefore, in this study, we evaluated the expression of the complete panel of sirtuins in adipose-derived stem cells isolated from both subcutaneous and visceral fat of non-obese and obese subjects. We aimed at investigating the influence of obesity on sirtuins' levels, their role in obesity-associated inflammation, and the relationship with the peroxisome proliferator-activated receptor delta, which also plays functions in adipose tissue metabolism. The mRNA levels in the four types of adipose-derived stem cells were evaluated by quantitative polymerase chain reaction, in untreated cells and also after 8 h of hypoxia exposure. Correlations among sirtuins' expression and clinical and molecular parameters were also analyzed. We found that sirtuin1-6 exhibited significant higher mRNA expression in visceral adipose-derived stem cells compared to subcutaneous adipose-derived stem cells of non-obese subjects. Sirtuin1-6 levels were markedly reduced in visceral adipose-derived stem cells of obese patients. Sirtuins' expression in visceral adipose-derived stem cells correlated negatively with body mass index and C-reactive protein and positively with peroxisome proliferator-activated receptor delta. Finally, only in the visceral adipose-derived stem cells of obese patients hypoxia-induced mRNA expression of all of the sirtuins. Our results highlight that sirtuins' levels in adipose-derived stem cells are consistent with protective effects against visceral obesity and inflammation, and suggest a transcriptional mechanism through which acute hypoxia up-regulates sirtuins in the visceral adipose-derived stem cells of obese patients

    Heat-shock pretreatment inhibits sorbitol-induced apoptosis in K562, U937 and HeLa cells.

    Get PDF
    The aim of this study was to determine whether heat-shock pretreatment exerted a protective effect against sorbitol-induced apoptotic cell death in K562, U937 and HeLa cell lines and whether such protection was associated with a decreased cytochrome c release from mithocondria and a decreased activation of caspase-9 and -3. Following heat-shock pretreatment (42 6 0.3C for 1 hr), these cell lines were exposed to sorbitol for 1 hr. Apoptosis was evaluated by DNA fragmentation, whereas caspase-9,-3 activation, cytochrome c release and heat-shock protein70 (HSP70) were assayed by Western Blot. Sorbitol exposure-induced apoptosis in these different cell lines with a marked activation of caspase-9 and caspase- 3, whereas heat-shock pretreatment before sorbitol exposure, induced expression of HSP70 and inhibited sorbitol-mediated cytochrome c release and subsequent activation of caspase-9 and caspase- 3. Similarly, overexpression of HSP70 in the three cell lines studied prevented caspase-9 cleavage and activation as well as cell death. Furthermore, we showed that the mRNA expression of iNOS decreased during both the heat-shock treatment and heat-shock pretreatment before sorbitol exposure. By contrast, the expression of Cu-Zn superoxide dismutase (SOD) and Mn-SOD proteins increased during heat-shock pretreatment before sorbitol exposure. We conclude that, heat-shock pretreatment protects different cell lines against sorbitol-induced apoptosis through a mechanism that is likely to involve SOD family members

    ERK-1 MAP kinase prevents TNF-induced apoptosis through bad phosphorylation and inhibition of bax translocation in HeLa cells

    Get PDF
    Extracellular signal-regulated kinase (ERK) 1/2 signaling is involved in tumor cell survival through the regulation of Bcl-2 family members. To explore this further and to demonstrate the central role of the mitochondria in the ERK1/2 pathway we used the HeLa cellular model where apoptosis was induced by tumor necrosis factor (TNF) and cycloheximide (CHX). We show that HeLa cells overexpressing ERK-1 displayed resistance to TNF and CHX. HeLa cells overexpressing a kinase-deficient form of ERK-1 (K71R) were more sensitive to TNF and CHX. In the ERK-1 cells, Bad was phosphorylated during TNF + CHX treatment. In the HeLa wt cells and in the K71R clones TNF and CHX decreased Bad phosphorylation. ERK-1 cells treated with TNF and CHX did not release cytochrome c from the mitochondria. By contrast, HeLa wt and K71R clones released cytochrome c. Bax did not translocate to the mitochondria in ERK-1 cells treated with TNF + CHX. Conversely, HeLa wt and K71R clones accumulated Bax in the mitochondria. In the HeLa wt cells and in both ERK-1 transfectants Bid was cleaved and accumulated in the mitochondria. The caspase-8 inhibitor IETD-FMK and the mitochondrial membrane permeabilization inhibitor bongkrekic acid (BK), partially prevented cell death by TNF + CHX. Anisomycin, a c-Jun N-terminal kinases activator, increased TNF-killing. The ERK-1 cells were resistant to TNF and anisomycin, whereas K71R clones resulted more sensitive. Our study demonstrates that in HeLa cells the ERK-1 kinase prevents TNF + CHX apoptosis by regulating the intrinsic mitochondrial pathway through different mechanisms. Inhibition of the intrinsic pathway is sufficient to almost completely prevent cell death. © 2009 Wiley-Liss, Inc

    Regulation of Intracellular pH Mediates Bax Activation in HeLa Cells Treated with Staurosporine or Tumor Necrosis Factor-α

    Get PDF
    Induction of apoptosis in HeLa cells with staurosporine produced a rise in the intracellular pH (pH(i)). Intracellular alkalinization was accompanied by translocation of Bax to the mitochondria, cytochrome c release, and cell death. The chloride channel inhibitor furosemide prevented intracellular alkalinization, Bax translocation, cytochrome c release, and cell death. Translocation of full-length Bid to the mitochondria was also prevented by furosemide. The cleavage product of Bid degradation (truncated Bid, tBid) was not detectable in the mitochondria. Its accumulation in the cytosol was prevented by furosemide. Apoptosis induced by tumor necrosis factor-alpha (TNF) lowered pH(i), an effect also accompanied by Bax translocation, cytochrome c release, and cell killing. Furosemide prevented all of these events. TNF induced a depletion of full-length Bid from the mitochondria and the cytosol but induced an accumulation of mitochondrial tBid. Furosemide only delayed full-length Bid depletion and tBid accumulation. The caspase 8 inhibitor IETD did not prevent the translocation of Bax. Although IETD did inhibit the cleavage of Bid and the accumulation of tBid, cell killing was reduced only slightly. It is concluded that with either staurosporine or TNF a furosemide-sensitive change in pH(i) is linked to Bax translocation, cytochrome c release, and cell killing. With TNF Bax translocation occurs as Bid is depleted and can be dissociated from the accumulation of tBid. With staurosporine a role for full-length Bid in Bax translocation cannot be excluded but is not necessary as evidenced by the data with TNF

    Sirtuins and Hypoxia in EMT Control

    Get PDF
    Epithelial–mesenchymal transition (EMT), a physiological process during embryogenesis, can become pathological in the presence of different driving forces. Reduced oxygen tension or hypoxia is one of these forces, triggering a large number of molecular pathways with aberrant EMT induction, resulting in cancer and fibrosis onset. Both hypoxia-induced factors, HIF-1α and HIF-2α, act as master transcription factors implicated in EMT. On the other hand, hypoxia-dependent HIFindependent EMT has also been described. Recently, a new class of seven proteins with deacylase activity, called sirtuins, have been implicated in the control of both hypoxia responses, HIF-1α and HIF-2α activation, as well as EMT induction. Intriguingly, different sirtuins have different effects on hypoxia and EMT, acting as either activators or inhibitors, depending on the tissue and cell type. Interestingly, sirtuins and HIF can be activated or inhibited with natural or synthetic molecules. Moreover, recent studies have shown that these natural or synthetic molecules can be better conveyed using nanoparticles, representing a valid strategy for EMT modulation. The following review, by detailing the aspects listed above, summarizes the interplay between hypoxia, sirtuins, and EMT, as well as the possible strategies to modulate them by using a nanoparticle-based approach

    Role of SIRT3 in Microgravity Response: A New Player in Muscle Tissue Recovery

    Get PDF
    Life on Earth has evolved in the presence of a gravity constraint. Any change in the value of such a constraint has important physiological effects. Gravity reduction (microgravity) alters the performance of muscle, bone and, immune systems among others. Therefore, countermeasures to limit such deleterious effects of microgravity are needed considering future Lunar and Martian missions. Our study aims to demonstrate that the activation of mitochondrial Sirtuin 3 (SIRT3) can be exploited to reduce muscle damage and to maintain muscle differentiation following microgravity exposure. To this effect, we used a RCCS machine to simulate microgravity on ground on a muscle and cardiac cell line. During microgravity, cells were treated with a newly synthesized SIRT3 activator, called MC2791 and vitality, differentiation, ROS and, autophagy/mitophagy were measured. Our results indicate that SIRT3 activation reduces microgravity-induced cell death while maintaining the expression of muscle cell differentiation markers. In conclusion, our study demonstrates that SIRT3 activation could represent a targeted molecular strategy to reduce muscle tissue damage caused by microgravity

    Urogenital Abnormalities in Adenosine Deaminase Deficiency

    Get PDF
    BACKGROUND: Improved survival in ADA-SCID patients is revealing new aspects of the systemic disorder. Although increasing numbers of reports describe the systemic manifestations of adenosine deaminase deficiency, currently there are no studies in the literature evaluating genital development and pubertal progress in these patients. METHODS: We collected retrospective data on urogenital system and pubertal development of 86 ADA-SCID patients followed in the period 2000-2017 at the Great Ormond Street Hospital (UK) and 5 centers in Italy. In particular, we recorded clinical history and visits, and routine blood tests and ultrasound scans were performed as part of patients' follow-up. RESULTS AND DISCUSSION: We found a higher frequency of congenital and acquired undescended testes compared with healthy children (congenital, 22% in our sample, 0.5-4% described in healthy children; acquired, 16% in our sample, 1-3% in healthy children), mostly requiring orchidopexy. No urogenital abnormalities were noted in females. Spontaneous pubertal development occurred in the majority of female and male patients with a few cases of precocious or delayed puberty; no patient presented high FSH values. Neither ADA-SCID nor treatment performed (PEG-ADA, BMT, or GT) affected pubertal development or gonadic function. CONCLUSION: In summary, this report describes a high prevalence of cryptorchidism in a cohort of male ADA-SCID patients which could represent an additional systemic manifestation of ADA-SCID. Considering the impact urogenital and pubertal abnormalities can have on patients' quality of life, we feel it is essential to include urogenital evaluation in ADA-SCID patients to detect any abnormalities, initiate early treatment, and prevent long-term complications

    Pro-inflammatory gene expression in solid glioblastoma microenvironment and in hypoxic stem cells from human glioblastoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adaptation to hypoxia and consequent pro-inflammatory gene expression of prostate and breast carcinomas have been implicated in the progression toward cancer malignant phenotype. Only partial data are available for the human tumor glioblastoma multiforme (GBM). The aim of our study was to analyze the hypoxic and pro-inflammatory microenvironment in GBMs and to demonstrate that in a stem/progenitor cell line derived from human glioblastoma (GBM-SCs), hypoxia activates a coordinated inflammatory response, evidencing an invasive and migratory phenotype.</p> <p>Methods</p> <p>From each of 10 human solid glioblastomas, clinically and histopathologically characterized, we obtained three surgical samples taken from the center and the periphery of the tumor, and from adjacent host normal tissue. Molecular and morphological analyses were carried out using quantitative real-time PCR and western blot (WB). GBM stem and differentiated cells were incubated under hypoxic conditions and analyzed for pro-inflammatory gene expression and for invasive/migratory behavior.</p> <p>Results</p> <p>A panel of selected representative pro-inflammatory genes (RAGE and P2X7R, COX2, NOS2 and, PTX3) were analyzed, comparing tumor, peritumor and host normal tissues. Tumors containing leukocyte infiltrates (as assessed using CD45 immunohistochemistry) were excluded. Selected genes were overexpressed in the central regions of the tumors (i.e. in the more hypoxic areas), less expressed in peripheral regions, and poorly expressed or absent in adjacent normal host tissues. Western blot analysis confirmed that the corresponding pro-inflammatory proteins were also differently expressed. Hypoxic stem cell lines showed a clear time-dependent activation of the entire panel of pro-inflammatory genes as compared to differentiated tumor cells. Biological assays showed that invasive and migratory behavior was strengthened by hypoxia only in GBM stem cells.</p> <p>Conclusions</p> <p>In human solid glioblastoma we have observed a coordinated overexpression of a panel of pro-inflammatory genes as compared to host normal tissue. We have also evidenced a similar pattern of overexpressed genes in GBM-SCs after hypoxic treatment, showing also a gain of invasive and migratory function that was lost when these stem cells differentiated. We suggest that, as has been previously described for prostatic and mammary carcinoma, in human glioblastoma acquisition of a proinflammatory phenotype may be relevant for malignant progression.</p

    Ren: a novel, developmentally regulated gene that promotes neural cell differentiation

    Get PDF
    Expansion and fate choice of pluripotent stem cells along the neuroectodermal lineage is regulated by a number of signals, including EGF, retinoic acid, and NGF, which also control the proliferation and differentiation of central nervous system (CNS) and peripheral nervous system (PNS) neural progenitor cells. We report here the identification of a novel gene, REN, upregulated by neurogenic signals (retinoic acid, EGF, and NGF) in pluripotent embryonal stem (ES) cells and neural progenitor cell lines in association with neurotypic differentiation. Consistent with a role in neural promotion, REN overexpression induced neuronal differentiation as well as growth arrest and p27Kip1 expression in CNS and PNS neural progenitor cell lines, and its inhibition impaired retinoic acid induction of neurogenin-1 and NeuroD expression. REN expression is developmentally regulated, initially detected in the neural fold epithelium of the mouse embryo during gastrulation, and subsequently throughout the ventral neural tube, the outer layer of the ventricular encephalic neuroepithelium and in neural crest derivatives including dorsal root ganglia. We propose that REN represents a novel component of the neurogenic signaling cascade induced by retinoic acid, EGF, and NGF, and is both a marker and a regulator of neuronal differentiation
    • 

    corecore