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Abstract
Background Improved survival in ADA-SCID patients is revealing new aspects of the systemic disorder. Although increasing
numbers of reports describe the systemic manifestations of adenosine deaminase deficiency, currently there are no studies in the
literature evaluating genital development and pubertal progress in these patients.
Methods We collected retrospective data on urogenital system and pubertal development of 86 ADA-SCID patients followed in
the period 2000–2017 at the Great Ormond Street Hospital (UK) and 5 centers in Italy. In particular, we recorded clinical history
and visits, and routine blood tests and ultrasound scans were performed as part of patients’ follow-up.
Results and Discussion We found a higher frequency of congenital and acquired undescended testes compared with healthy
children (congenital, 22% in our sample, 0.5–4% described in healthy children; acquired, 16% in our sample, 1–3% in healthy children),
mostly requiring orchidopexy. No urogenital abnormalities were noted in females. Spontaneous pubertal development occurred in the
majority of female and male patients with a few cases of precocious or delayed puberty; no patient presented high FSH values. Neither
ADA-SCID nor treatment performed (PEG-ADA, BMT, or GT) affected pubertal development or gonadic function.
Conclusion In summary, this report describes a high prevalence of cryptorchidism in a cohort of male ADA-SCID patients which
could represent an additional systemic manifestation of ADA-SCID. Considering the impact urogenital and pubertal abnormalities
can have on patients’ quality of life, we feel it is essential to include urogenital evaluation in ADA-SCID patients to detect any
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abnormalities, initiate early treatment, and prevent long-term complications.
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Abbreviations
ADA Adenosine deaminase
ADA-SCID Severe combined immunodeficiency

due to adenosine deaminase deficiency
PEG-ADA Polyethylene glycol-conjugated

adenosine deaminase
GT Gene therapy
BMT Bone marrow transplantation
HH Hypogonadotropic hypogonadism
LH Luteinizing hormone
FSH Follicle-stimulating hormone

Introduction

Severe combined immunodeficiency due to adenosine deam-
inase deficiency is a rare autosomal recessive disease (ADA-
SCID, OMIM # 102,700) caused by mutations in the gene
encoding the enzyme ADA type 1, resulting in impairment
of the purine salvage pathway [1–3]. This defect in purine
metabolism primarily affects lymphocyte development and
function resulting in varying degrees of immune deficiency
[4].

Several studies demonstrate that ADA-SCID is a systemic
disease, and thanks to improved survival, an increasing num-
ber of non-immune manifestations are being recognized and
reported [1–5].

At present, no study describes abnormalities in the devel-
opment of genitalia or in the pubertal progression of ADA-
SCID patients treated for their underlying immune disorder.

Methods

In this report, we describe data collected retrospectively on the
urogenital system and pubertal development of 86 ADA-
SCID patients followed in the period 2000–2017: 51 males
and 35 females with an age range from 4 months to 30 years
were included in this analysis (Table 1). Patients were from
different ethnicities, and there was a high prevalence of con-
sanguinity (51%). Previous treatments included enzyme re-
placement therapy (PEG-ADA ERT), gene therapy (GT), or
allogeneic bone marrow transplantation (BMT) as single ther-
apy or given in various combinations (Table 1).

Patients in our cohort received immunological follow-up in
five hospitals: 23 patients have been followed at our center, 1
patient at Bambin Gesù Hospital in Rome, 2 patients at
Hospital Meyer in Florence, 1 patient at Hospital in Padova,

and 59 patients in Great Ormond Street Hospital, London.
Italian hospitals are part of the AIEOP (Associazione
Italiana di Ematologia e Oncologia Pediatrica) and IPINET
(Network Italiano Immunodeficienze Primitive) network.

Patients or their guardians provided written informed con-
sent according to local consent procedures. This report was
performed in accordance with the ethical standards of the in-
stitutional research committees and with the 1964 Helsinki
declaration and its later amendments.

We collected the information registered during the immu-
nological follow-up. Medical history, clinical data, routine
blood tests, and ultrasound scans performed as part of pa-
tients’ follow-up were recorded in patients’ notes. If patients
presented with clinical issues during the follow-up, additional
investigations were performed. In male patients, we docu-
mented the number of patients with cryptorchidism, whether
cryptorchidism was unilateral or bilateral, congenital (testis
not present in the scrotum from birth by 3 months of age), or
acquired (testis that was originally present in the scrotum at
birth but ascends later) [6] or if the cryptorchidism solved
spontaneously or required orchiopexy, the age of surgery,
and any recurrences. We registered any urological malforma-
tion associated with cryptorchidism and the presence of
phimosis and requirement for circumcision. Analyzing the
complete cohort of patients, pubertal progression was evalu-
ated at every clinical evaluation available for follow-up in
both males and females. We documented the age of spontane-
ous puberty and every case of precocious or late puberty.
Female patients underwent abdominal US scan as part of the
follow-up; we documented data of any alteration of gonads at
US scan. As markers of puberty, the following blood tests
were performed in the majority of patients: luteinizing hor-
mone (LH), follicle-stimulating hormone (FSH), testosterone
(male patients), or estradiol (female patients). Analysis of
these biomarkers (measured using fluorimetric methods) to-
gether with clinical evaluation of puberty allows evaluation of
the hypothalamus-pituitary-gonad axis function. Moreover, if
these hormones are evaluated in the first 3–6 months of life, it
is possible to identify mini-puberty during which LH and FSH
increase as it happens during puberty. This is a physiologic
hormonal fluctuation without clinical manifestations associat-
ed with sex steroids rising to level reached in early-middle
pubertal levels, without peripheral effects. If mini-puberty is
identified with blood tests, it suggests normal hypothalamus-
pituitary-gonad axis function. It has been hypothesized that
this hormonal phase has a role in physiologic descent of testis
in the first year of life in transient congenital cryptorchidism
[6–9].

J Clin Immunol (2020) 40:610–618 611



Table 1 Sample description, sex, origin, parents’ consanguinity, ADA-SCID treatment, and years of follow-up

N° sex Origin C ADA mutation Treatment Years of follow-
up § (age)

1 F South America/Hispanic Yes Compound heterozygous, c.320 T > C, p.L107P/c.632G >A,
p.R211H

Haploidentical BMT°➔
GT1➔PEG-ADA

15 (3–18 y)

2 M South America/Hispanic No Compound heterozygous, c.221G > T, p.G74V/c.845G >A,
p.R282Q

Haploidentical BMT° ➔ GT1 14 (1–15 y)

3 F Arabic/White Yes Homozygous c.845G >A, p.R282Q Haploidentical BMT°➔
PEG-ADA ➔ GT1

13 (1–14 y)

4 F Arabic/White Yes Compound heterozygous, c.646G >A, p.G216R/c.956_
960delAAGAG; p.E319GfsX3

PEG-ADA ➔ GT1 11 (1–12 y)

5 M Europe/White Yes Homozygous c.632G >A, p.R211H PEG-ADA ➔ GT1 12 (5–17 y)
6 M Europe/White No Compound heterozygous, c.646G >A, p.G216R/c.872C > T,

p.S291L
PEG-ADA ➔ GT1 11 (0–11 y)

7 M Europe/White No Homozygous c.478 + 2 T >C PEG-ADA ➔ GT1 10 (1–11 y)
8 F Arabic/White Yes Homozygous c.646G >A, p.G216R Haploidentical BMT°➔

PEG-ADA ➔ GT1
8 (0–8 y)

9 M South America/Hispanic Yes Homozygous c.632G >A, p.R211H PEG-ADA ➔ GT1 9 (0–9 y)
10 M North America/White No Compound heterozygous, c.646G >A, p.G216R/c.956_

960delAAGAG; p.E319GfsX3
PEG-ADA ➔ GT1 9 (1–10 y)

11 M South Asia Yes Homozygous c.606 + 5G >? (Exon6, splice donor site + 5—
no more data available)

PEG-ADA ➔ GT1 9 (0–9 y)

12 M North America/White No Compound heterozygous, c.646G >A, p.G216R/Exon10,
deletion + 6 c.975 + 6Tdel

PEG-ADA ➔ GT1 8 (6–14 y)

13 F Africa/White No Homozygous: c.466C > T, p.R156C PEG-ADA ➔ GT1 8 (2–10 y)
14 M Africa/Black No Homozygous, c.7C > T, p.Q3X PEG-ADA ➔ GT1 6 (2–8 y)
15 M Africa/Black Yes Homozygous, c.881C >A, p.T294K PEG-ADA ➔ GT1 ➔ MSD

BMT2
4 (1–5 y)

16 M Arabic/White Yes Homozygous, c.956_960delAAGAG, p.E319GfsX3 PEG-ADA ➔ GT1 5 (2–7 y)
17 F European/White No Compound heterozygous, c.632G >A, p.R211H/c.646G >A,

p.G216R
PEG-ADA ➔ GT1 2 (0–2 y)

18 M Europe/Hispanic No Compound heterozygous, c.467G >A, p.R156H /
c.646G >A, p.G216R

PEG-ADA ➔ GT1 ➔ MUD
BMT*

3 (2–5 y)

19 M Europe/White Yes Compound heterozygous, c.385G >A, p.V129M /(second
mutation not identified)

PEG-ADA 16 (14–30 y)

20 F Europe/White Unk Homozygous, c.385G >A, p.V129M PEG-ADA 23 (4–27 y)
21 F Europe/White No Homozygous, c.499delG, pV167P PEG-ADA 12 (6–18 y)
22 M Europe/White Yes Homozygous, c.632G >A, p.R211H PEG-ADA 17 (3–20 y)
23 M Europe/White Yes Homozygous, c.632G >A, p.R211H PEG-ADA ➔ MSD BMT3 10 (0–10 y)
24 M Europe/White Unk Homozygous, c.632G >A, p.R211H PEG-ADA ➔ MSD BMT° 6 (5–10 y)
25 M South America/Hispanic No Homozygous, c.845G >A, p.R282Q PEG-ADA ➔ MUD BMT° 1 (0–1 y)
26 F Europe/White Unk Exon 3, insertion (no more data available) PEG-ADA ➔ MSD BMT° 14 (0–14 y)
27 M Europe/White No Compound heterozygous, c.466C > T, p.R156C/c.955_

959GAAGA, p.E320GfsX3
PEG-ADA ➔ MUD BMT° 13 (1–14 y)

28 M Europe/White Unk ND Haploidentical BMT* 15 (0–15 y)
29 F Europe/White Unk ND PEG-ADA ➔ MUD BMT* 11 (0–11 y)
30 F South Asia Unk Homozygous, c.424C > T, p.R142X PEG-ADA ➔ MSD BMT° 13 (0–13 y)
31 M Unk Unk Homozygous, c.424C > T, p.R142X PEG-ADA ➔ MSD BMT° 17 (0–17 y)
32 F Africa/Black Yes Homozygous, c.7C > T, p.Q3X PEG-ADA ➔ MSD BMT° 18 (0–18 y)
33 M Europe/White Irish Unk Homozygous, c.646G >A, p.G216R PEG-ADA ➔ MFD BMT° 17 (0–17 y)
34 F South Asia Yes ND PEG-ADA ➔ MFD BMT° 18 (0–18 y)
35 F Europe/White Unk Compound heterozygous, c.363-1G >C/c.364G>A,

p.G122R
PEG-ADA ➔ MUD BMT4 18 (0–18 y)

36 M Europe/White Yes Homozygous, c.646G >A, p.G216R PEG-ADA ➔ MFD BMT° 17 (0–17 y)
37 F Europe/White Yes ND PEG-ADA ➔ MSD BMT° 16 (0–16 y)
38 F Europe/White Irish Yes Homozygous, c.646G >A, p.G216R PEG-ADA ➔ MFD BMT° 15 (0–15 y)
39 M Africa/Black Yes Homozygous, c.7C > T, p.Q3X PEG-ADA ➔ GT5 17 (0–17 y)
40 M Africa/Black No Homozygous, c.7C > T, p.Q3X PEG-ADA ➔ MFD BMT° 14 (0–14 y)
41 M Africa/Black Yes Homozygous, c.646G >A, p.G216R PEG-ADA ➔ MSD BMT° 13 (0–13 y)
42 F Africa/Black No Homozygous, c.7C > T, p.Q3X PEG-ADA ➔ MUD BMT6 14 (0–14 y)
43 M South Asian heritage Yes Homozygous, c.716G >A, p.G239D PEG-ADA ➔ MSD BMT° 12 (0–12 y)
44 M Europe/White No Compound heterozygous, c.367delG, p.D123TfsX10/c.956_

960delAAGAG; p.E319GfsX3
PEG-ADA ➔ GT5 13 (0–13 y)

45 F Europe/White No Compound heterozygous, c.467G >A,
p.R156H/c.478 + 1G >A

PEG-ADA ➔ GT (first)5 ➔
GT (second)7

13 (2–15 y)

46 M South Asia Yes Homozygous, c.716G >A, p.G239D PEG-ADA ➔ MSD BMT° 11 (0–11 y)
47 F Europe/White Yes Homozygous, c.646G >A, p.G216R PEG-ADA ➔ MFD BMT° 11 (1–12 y)
48 M Arabic /white Yes Homozygous, c.956_960delAAGAG; p.E319GfsX3 PEG-ADA ➔ GT5 8 (0–8 y)
49 M Arabic/White Yes Homozygous, c.385G >A, p.V129M PEG-ADA ➔ MSD BMT° 5 (1–6 y)
50 M Europe/White No ND PEG-ADA ➔ GT5 3 (1–4 y)
51 F Africa/Black Yes Homozygous, c.7C > T, p.Q3X PEG-ADA ➔ MSD Cord° 10 (0–10 y)
52 M Africa/Black Yes Homozygous, c.646G >A, p.G216R PEG-ADA ➔ GT5 11 (0–11 y)
53 F South Asia Yes Homozygous, c.646G >A, p.G216R PEG-ADA ➔ MMUD Cord8 9 (0–9 y)
54 F South Asia Yes Homozygous, c.703C > T, p.R235W PEG-ADA ➔ MMUD Cord8 10 (0–10 y)
55 M Arabic/White Yes Homozygous, c.428dupA, p.D143EfsX28 PEG-ADA ➔ MUD Cord8 3 (0–3 y)
56 M Europe/White No Compound heterozygous, c.466C > T, p.R156C/c.646G>A,

p.G216R
PEG-ADA➔ GT5 ➔ HSCT7 12 (1–13 y)

57 M South Asia Yes Homozygous, c.646G >A, G216R PEG-ADA ➔ MUD Cord➔
MUD PBSC9

9 (0–9 y)

58 F South Asia Yes Homozygous, c.716G >A, p.G239D PEG-ADA ➔ MFD BMT° 7 (0–7 y)
59 M Europe/White No Compound heterozygous, c.955-958delGAAG,

p.E320RfsX6/c.1078 + 2 T >A
PEG-ADA ➔ GT (first) ➔

GT (second)
8 (4–12 y)

60 F Arabic/White Yes Homozygous, 1079-15 T >A PEG-ADA ➔ MUD PBSC5 3 (1–4 y)
61 M Arabic/White Yes Homozygous, c.385G >A, p.V129M PEG-ADA ➔ MFD BMT10 4 (0–4 y)
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Table 1 (continued)

N° sex Origin C ADA mutation Treatment Years of follow-
up § (age)

62 M Europe/White Irish Yes Homozygous, c.646G >A, p.G216R PEG-ADA ➔ MFD BMT0 7 (0–7 y)
63 M Africa/Black Yes Homozygous, c.7C > T, p.Q3X PEG-ADA ➔ GT7 3 (4–7 y)
64 M South Asia Yes Homozygous, c.646G >A, p.G216R PEG-ADA ➔ GT7 7 (0–7 y)
65 F Europe/White No Compound heterozygous, c.646G >A, p.G216R/c.955_

959GAAGA, p.E320GfsX3
PEG-ADA ➔ GT7 5 (0–5 y)

66 F South Asia Yes Homozygous, c.646G >A, p.G216R PEG-ADA ➔ GT7 5 (0–5 y)
67 M Arabic/white No Compound heterozygous, c.976-1G >C/c.302G > T, p.R101L PEG-ADA ➔ GT (first) 7 ➔

GT (second) 7
9 (1–10 y)

68 M Africa/Black No Homozygous, c.7C > T, p.Q3X PEG-ADA ➔ GT7 4 (0–4 y)
69 F Europe/White No Compound heterozygous, c.872C > T, p.S291L/c.986C > T,

p.A329V
PEG-ADA ➔ GT7 4 (1–5 =y)

70 M Africa/Black No Homozygous: c.7C > T, p.Q3X PEG-ADA ➔ GT7 4 (0–4 y)
71 M Africa/Black No Compound heterozygous, c.603C >G, p.Y201X/c.632G>A,

p.R211H
PEG-ADA ➔ GT7 4 (0–4 y)

72 F Africa/Black No Homozygous, c.7C > T, p.Q3X PEG-ADA ➔ GT7 4 (9–13 y)
73 F Europe/White Irish Yes Homozygous, c.646G >A, p.G216R PEG-ADA ➔ GT7 2 (0–2 y)
74 M Europe/White No Homozygous, c.646G >A, p.G216R PEG-ADA ➔ MFD BMT➔

MSD BMT°
2 (0–2 y)

75 M Unk No Compound heterozygous, c.320 T > C, p.L107P/c.632G >A,
p.R211H

PEG-ADA ➔ GT7 1 (1–2 y)

76 F Africa/Black Yes Homozygous, c.7C > T, p.Q3X PEG-ADA ➔ GT7 3 (0–3 y)
77 M Europe/White Irish No Homozygous, c.646G >A, p.G216R PEG-ADA ➔ GT7 2 (0–2 y)
78 M Europe/White Yes Compound heterozygous, c.310C >A, p.P104T/c.646G >A,

p.G216R
PEG-ADA ➔ GT7 2 (0–2 y)

79 F Europe/White Yes Compound heterozygous, c.43C >G, p.H15D/c.757_
758dupCG

PEG-ADA ➔ GT7 2 (0–2 y)

80 F Europe/White No Homozygous, c.646G >A, p.G216R PEG-ADA ➔ GT7 2 (0–2 y)
81 M Africa/White No Homozygous, c.704G >A, p.R235Q PEG-ADA ➔ GT7 1 (2–3 y)
82 M Europe/White Irish Yes Homozygous, c.646G >A, G216R PEG-ADA ➔ GT7 2 (0–2 y)
83 F Europe/White No Homozygous, c.320 T > C, p.L107P PEG-ADA ➔ GT7 0
84 M Africa/Black Yes Homozygous, c.7C > T, p.Q3X PEG-ADA ➔ GT7 1 (0–1 y)
85 F Europe/White Irish Yes Homozygous, c.646G >A, G216R PEG-ADA ➔ GT7 0
86 F Europe/White-Africa/Black No Compound heterozygous, c.482G >A,

p.W161X/c.1078 + 2 T >A
PEG-ADA ➔ GT7 0

C parents’ consanguinity,Unk unknown, § years of follow-up are considered time from the first diagnostic test available to the last. In parentheses, age of
the diagnostic test available–age of the last diagnostic test available.ND not done, BMT bone marrow transplantation,GT gene therapy,MSDBMT from
matched sibling donor,MFD BMT from matched family donor,MUD BMT from matched unrelated donor,MMUD BMT from mismatched unrelated
donor, PBSC peripheral blood stem cells, Cord cord blood cells

In the column treatment superscript numbers:

*Unknown
0No conditioning agents
1 Busulfan (single agent, non myeloablative)
2 Reduced toxicity regimen Treo/Flu
3 Reduced intensity conditioning (RIC) Bu/Flu
4 RIC Flu/Melph/ATG
5Melphalan (single agent)
6 RIC Flu/Melph/Campath
7 Low-dose busulfan (AUC ~ 20)
8Myeloablative conditioning (MAC) Treo/Cy
9MAC Treo/Flu
10 Campath (single agent)
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Table 2 Male sample, urogenital abnormalities, pubertal development, hormonal tests, and testis US scan

N° WG CUT AUT Treatment of undescended testes Other urogenital
diseases

Puberty Testis structure at US
scan

Hypothalamus-
pituitary-
gonads axis

2 ≥ 37 Left Right
(9
y)

Left orchidopexy 2 y and 7 months
Right orchidopexy 9 y and 11 months.

No relapse

Phimosis Pubescent at 15 y (G2P4) Dyshomogeneous
(hyporeflectant
areas) since 14 y

Physiologic
activation

5 36 Right No Right orchidopexy. No relapse 1) Phimosis
2) inguinal hernia

Pubescent at 15 y G5 Normal Physiologic
activation

6 36 + 1 Bilat No Bilateral orchidopexy 2 y and
3 months. No relapse

Phimosis Prepubescent at 10 y Normal Not activated

7 ≥ 37 No No NA Phimosis Prepubescent at 11 y ND Not activated
9 ≥ 37 No Right

(6
y)

Right orchidopexy 7 y and 2 months.
No relapse

Phimosis Prepubescent at 9 y Hyporeflectant areas
since 13 y

Not activated

10 ≥ 37 no No NA No Prepubescent at 8 y ND Not activated
11 ≥ 37 Bilat No Gonadoreline not effective. Bilateral

orchidopexy 3 y. Bilateral relapse
Gonadoreline not effective. Left

orchidopexy 5y 6mo. Bilateral
relapse 7 y

1) Phimosis
2) Micropenis
3) Posterior

urethral valve
left megaureter

Normal mini-puberty
Prepubescent at 9 y

ND Not activated

12 32 no No NA No Prepubescent at 13 y Homogenous but less
reflectant since
11 y

Not activated

14 ≥ 37 Left Bilat
(7
y)

Congenital undescended testes
spontaneously solved

Bilateral orchidopexy 8 y. No relapse

Phimosis Prepubescent at 8 y Normal Not activated

15 ≥ 37 No No No Phimosis Prepubescent at 5 y Homogenous but less
reflectant since
11 y

Not activated

16 ≥ 37 No Bilat
(3
y)

Bilateral orchidopexy 4y. Left relapse
5 y

No Prepubescent at 7 y Normal Not activated

19 ≥ 37 No Right Gonadoreline, effective. Right relapse
right orchidopexy
13y + hernioplastic. No relapse

Inguinal hernia Pubescent at 30 y G5 Normal Not activated

22 ≥ 37 No Left
(2
y)

Spontaneously solved. No relapse Inguinal hernia Pubescent at 15 y G4 ND Not activated

24 ≥ 37 No Bilat
(5
y)

Bilateral orchidopexy 5 y. No relapse No Pubescent—early onset (at
11 y G4)

Hyperreflectant spots
(seminiferous
tubule fibrosis)

Physiologic
activation

28 Unk No No NA Micropenis CDGP; 15 y after
testosterone: G2P3A1

Normal ND

31 > 37 Bilat No Unk Micropenis CDGP; at 17 y: G3P3A2 Normal Physiologic
activation

33 Unk No No NA Micropenis Unk ND ND
36 > 37 No No NA No CDGP; at 17 y after

testosterone: G4P4A2
ND ND

40 > 37 No No NA No Prepubescent at 14 y Normal ND
43 > 37 Bilat No 2 y bilateral orchidopexy No Pubescent at 12 y

(G4P3A2), early onset
ND ND

57 > 37 Bilat No Not done yet—performing follow-up Micropenis Normal mini-puberty
Prepubescent at 9 y

ND ND

59 >37 Right No 11 y right orchidopexy Phimosis Prepubescent at 11 y ND ND
62 Unk Left No 18 months left orchidopexy No Prepubescent at 7 y Normal ND
68 > 37 No Right 4 y right orchidopexy No Prepubescent 4 y and

7 months
Normal Not activated

82 > 37 Bilat No Not done yet—performing follow-up Micropenis
Undervirilized

scrotum

Suspect hypogonadism
hypogonadotropic (no
mini-puberty)

Prepubescent 1 y and
7 months

ND ND

Only patients with urogenital abnormalities or alteration in puberty or patients who performed hormonal test/US testis scan are included in the table

Pubertal stage was evaluated with Tanner stage. Hypothalamus-pituitary-gonads axis evaluation: physiologic activation means we registered LH values
> 1mUI/ml, FSH values > 2mUI/ml and < 10mUI/ml, testosterone or estradiol levels adequate for age; not activated means LH values < 1mUI/ml, FSH
values < 2 mUI/ml, testosterone not detectable; normal mini-puberty means LH and FSH values similar to puberty values

WGweek gestation,UT undescended testis,NA not applicable,ND not done,UNK unknown. Cryptorchidism:CUT congenital undescended testis, AUT
acquired undescended testis, in brackets the age of diagnosis, Bilat bilateral, CDGP constitutional delay of growth and puberty

J Clin Immunol (2020) 40:610–618614



Results

Regarding genital development, results differed between
males and females.

Of 51 male patients, 11 (22%) presented congenital unde-
scended testes; of those, 6 (54.5%) were bilateral and 7
(63.6%) required orchidopexy, respectively (Table 2). Eight
out of 51 (16%) presented acquired undescended testes and
among these 3/8 were bilateral and 7/8 required orchidopexy.
None of the patients presenting with undescended testes were
born at < 36 weeks gestation. Six of 11 patients with congen-
ital undescended testes had consanguineous parents (54%,
Tables 1 and 2). Among other urogenital abnormalities seen,
3/51 patients presented with inguinal hernia requiring surgical
intervention, 6/51 presented micropenis of whom 4 had asso-
ciated cryptorchidism, and one subject had posterior urethral
valves. Nine out of 51 (18%) presented phimosis, and 5/9
were treated with circumcision (Table 2).

Abdominal US scans performed in 10/35 female patients
were normal with no abnormalities documented in ovaries,
uterus, or vagina (Table 3).

In terms of pubertal development, data were available for
33 females and 48 males. In the overall population 28/81 had
achieved puberty and 52/81 are still prepubescent (aged less
than 14 years). Among female patients, 51.5% are still prepu-
bescent (age ≤ 10 years) while 47.0% presented spontaneous
pubertal progression (Table 3). Among these, 3/16 presented
early onset of puberty (at 8 years) and 2/3 were treated with
gonadotropin-releasing hormone agonists. Among the male
patients (Table 2), 73% are still prepubescent (age < 14 years).

Nine patients presented spontaneous pubertal development of
whom 2 showed early onset of puberty (at 9 years). Three
patients presented delayed onset of puberty but appropriate
progression (constitutional delay in growth and puberty) of
whom 2 were treated with testosterone inducing the onset of
puberty.

Hormonal data are available in 20 patients (Table 4). In 9
pubescent patients (5 females, 4 males) hormonal tests
showed physiologic activation of the hypothalamic-pituitary-
gonadal axis. In 11 prepubescent patients (11 males), LH,
FSH, and testosterone or estradiol resulted low. None of the
patients had raised FSH values. No patient with delayed pu-
berty presented hypogonadotropic hypogonadism (HH) al-
though one patient with delayed puberty was not investigated
(patient n° 40—age 14 years). Three patients with micropenis
and bilateral cryptorchidism underwent blood tests within the
first 6 months of life (during mini-puberty), and 2 presented
physiologic activation of hypothalamic-pituitary-gonadal axis
(Table 2). In one patient, HH was suspected, and testosterone
treatment was commenced (the patient is 1 year old).

Discussion

Currently, there are no studies in the literature evaluating gen-
ital development or pubertal progression in ADA-SCID pa-
tients. No abnormalities of the gonads, uterus, and vagina
were detected in the female subgroup, even if these data
should be taken with caution since only a minor proportion
of female subjects was studied. Therefore, we cannot exclude

Table 3 Female sample, urogenital abnormalities at pelvic US scan, pubertal development, and hormonal tests

N° Pelvic us
scan

Other urogenital
disease

Pubertal stage Precocious
puberty

Treatment with GnRH
agonist

Delayed
puberty

Hypothalamus-pituitary-
gonads axis

3 Normal No Pubescent 15 y TS V
RM

No No No ND

4 Normal No Pubescent 12 y TS V
RM

Yes (8 y) Yes (8–11 y) No ND

13 Normal No Pubescent 10 y, B4
P2–3

No No No Physiologic activation

17 Normal No Prepubescent 3 y No No No ND

20 Normal No Pubescent RM No No No Physiologic activation

21 Normal No Pubescent IM# Yes (8 y) No No Physiologic activation

42 Normal No Pubescent 14 y, RM No No No Physiologic activation

45 Normal Polycystic kidney
disease

Pubescent at 15 y,
RM

No No No ND

53 Normal No Pubescent at 9 y,
A1P2B3

Yes (9 y) Yes (9 y–ongoing) No Normal

ND not done, TS Tanner stage, RM regular menses, IM irregular menses

Only patients who performed US pelvic scan and/or hormonal tests were included in this table (for complete female sample see table in electronic
supplemental material). In the column precocious puberty, the age of onset is reported in brackets

# patient n° 21 presented irregular menstrual cycles with prolonged periods of amenorrhea associated with hyperinsulinism, hirsutism, and
hyperandrogenism. Polycystic ovary syndrome was suspected, and the patient was treated with cyproterone acetate and transdermal estradiol
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the association of urogenital abnormalities in female ADA-
SCID. Conversely, we identified a high proportion of congen-
ital and acquired undescended testes. In particular, the inci-
dence of congenital undescended testes was higher in our
cohort (22%) compared with healthy full-term neonates
(0.5–4%, few authors report incidence up to 9%) [6–8].
Moreover, while in the general population 70–80% of unde-
scended testes resolve spontaneously with only 23% requiring
orchidopexy, the proportion of ADA-SCID patients eventual-
ly requiring orchidopexy was higher, with 64% of finally re-
quiring surgery.

A higher incidence of congenital undescended testes is de-
tected in premature neonates (up to 45%) [6, 7] but all patients
with cryptorchidism in our sample were born at term
(Table 2). Congenital cryptorchidism is a manifestation of
numerous clinical syndromes; the ratio of non-syndromic to
syndromic cryptorchidism is described to be greater than 6:1
[7]. In our sample there is high percentage of consanguinity
(54% of patients with congenital undescended testes have
consanguineous parents, Tables 1 and 2). Given the high rate
of consanguinity in our cohort we cannot rule out the

possibility of an additional inherited defect accounting for this
increased incidence. However, even in patients without con-
sanguineous parents, the incidence remains high compared
with the general population (5/51, 10%).

Considering the pathogenesis, cryptorchidism is due to
aberrant embryological development. The embryology of
testicular descent is complex involving numerous anatom-
ical structures and hormones [6–7]. Androgens are known
to play a role in this as HH and panhypopituitarism are
associated with bilateral cryptorchidism [9]. Also, the pos-
sibility that environmental chemicals interfere with normal
reproductive tract development has been raised [7]. We feel
we can exclude the hypothesis of HH here as we did not
detect a delay in puberty usually associated with HH.
Thirty-five percent of our patients entered spontaneous pu-
bertal development and progression with adequate hor-
mone levels; the remaining patients are aged 14 years or
less. One can hypothesize that ADA may play a role in
testicular embryological development/descent, and/or it is
possible that toxic purine metabolites could interfere with
this process.

Table 4 Puberty and hormonal
tests in male and female patients N° Sex Pubertal stage Hypothalamus-pituitary-gonads axis

2 M Pubescent at 15 y (G2P4) Physiologic activation

5 M Pubescent at 15 y (G5) Physiologic activation

6 M Prepubescent at 10 y Not activated

7 M Prepubescent at 11 y Not activated

9 M Prepubescent at 9 y Not activated

10 M Prepubescent at 8 y Not activated

11 M Prepubescent at 9 y Normal mini-puberty

Not activated

12 M Prepubescent at 13 y Not activated

13 F Pubescent 10 y, B4 P2–3 Physiologic activation

14 M Prepubescent at 8 y Not activated

15 M Prepubescent at 5 y Not activated

16 M Prepubescent at 7 y Not activated

19 M Pubescent at 30 y (G5) Physiologic activation

20 F Pubescent, regular menses Physiologic activation

21 F Pubescent, irregular menses
(polycystic ovary syndrome)

Physiologic activation

24 M Pubescent at 10 y (G1–2) Physiologic activation

42 F Pubescent 14 y, regular menses Physiologic activation

53 F Pubescent at 9 y: A1P2B3 Physiologic activation

57 M Prepubescent at 9 y Normal mini-puberty

Not activated

82 M Prepubescent 1 y and 7 months Suspected hypogonadotropic hypogonadism,
no mini-puberty (testosterone treatment)

Only patients who performed hormonal tests were included in this table. Pubertal stage evaluated with Tanner
stage. Hypothalamus-pituitary-gonads axis evaluation: physiologic activation means we registered LH values >
1 mUI/ml, FSH values > 2 mUI/ml and < 10 mUI/ml, testosterone or estradiol levels adequate for age; not
activated means LH values < 1 mUI/ml, FSH values < 2mUI/ml, testosterone or estradiol not detectable; normal
mini-puberty means LH and FSH values similar to puberty values
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In our population, we also identified a high incidence of ac-
quired undescended testis (16%), with 87% of cases requiring
orchidopexy. In a healthy population, acquired undescended tes-
tes are reported to occur in 1–3% of cases [8]. Acquired unde-
scended testes have a different pathogenesis compared with con-
genital undescended testes [7], mainly related to adhesions or
increased stiffness/shortness of anatomical barriers involved. It
is possible that metabolic abnormalities related to ADA deficien-
cy could alter the histologic structure of these tissues. The toxic
effect of ADAmetabolites has been reported on different tissues,
and it is well described how purinergic signaling plays an impor-
tant role in fibrosis damage of several organs (skin, heart, liver,
and lung) during tissue repair. For example, the profibrotic role of
ADA deficiency in the lung has been clearly shown in an animal
model with adenosine deaminase-deficient mice developing
adenosine-dependent pulmonary fibrosis due to accumulation of
ADA metabolites [10, 11]. We can hypothesize that ADA defi-
ciency could cause fibrosis in tissues that are crossed by testes,
increasing the stiffness of the physiologic anatomical barriers.

In our patients receiving PEG-ADA ERT, BMT, or GT
(with or without conditioning), FSH was not elevated. Thus,
in our sample, neither ADA deficiency nor the treatments
received negatively affected pubertal development or gonadic
function. We did not perform specific tests to evaluate fertility
in our cohort, mainly due to the young age of the patients. We
can assume that our patients have functional endocrine regu-
lation of puberty as they have normal pubertal development
and normal testosterone or estradiol levels. The oldest patient
is 30 years, but the mean age of the group is 19 years.
However, we cannot know whether a dysfunction of endo-
crine gonadal component will have a later onset. No data are
available in the literature regarding fertility in ADA-SCID.
For patients undergoing BMT, there is a risk of infertility
which of infertility is higher (> 80%) in patients treated with
conditioning regimens containing TBI, high-dose cyclophospha-
mide, melphalan, and busulfan. The use of a reduced-intensity
conditioning regimen is expected to decrease HSCT-related side
effects. Recently, the Pediatric Diseases Working Party of the
European Society for Blood and Marrow Transplantation has
established recommendations for the diagnosis and pre-emptive
procedures that should be offered to all children and adolescents
in Europe who undergo life-saving allogeneic SCT [12].
Emerging reports describe fertility and gonadal function in
transplanted SCID [13–15], but actually, no specific studies on
ADA-SCID have been performed. We recommend that these
aspects deserve special attention considering the systemic mani-
festations of the condition (ADA-SCID) and the potential effects
of its treatments on gonadal function.

In the literature, excess of adenosine in murine penile erec-
tile tissues has been described associated with priapism [16]:
This study highlights how adenosine deaminase plays a bio-
logical role in different tissues and systems. Considering our
sample’s age, we did not analyze the erectile dysfunction.

The major limit of this report is the number of patients
evaluated: We recognize that this study is based on limited
sample size, but it is expected considering that ADA-SCID
is an ultra-rare disease (from 1:200,000 to 1:1,000,000 births).

Conclusion

In summary, this report describes the high incidence of urogenital
abnormalities in a cohort of male ADA-SCID patients, which
likely represents systemic manifestations of ADA-SCID. We
identified a high incidence of cryptorchidism in our male patients
with no urogenital abnormalities noted in females. Spontaneous
and age appropriate pubertal development occurred in most fe-
males and males with a few cases of precocious or delayed pu-
berty noted.We recommend regularly evaluating pubertal state as
part of the complete physical examination in ADA-SCID pa-
tients. If cryptorchidism is present, we suggest undertaking spe-
cialist urologic evaluation as soon as possible. Patientswith crypt-
orchidism have an increased risk of progressive infertility, testic-
ular malignancy, and torsion [8]; successful relocation of the tes-
tes may reduce these potential long-term sequelae. Considering
the impact urogenital and pubertal abnormalities can have on
patients’ quality of life, we feel it is essential to include relevant
history taking, clinical examination, and endocrine investigations
in ADA-SCID patients to detect any abnormalities, initiate early
treatment, and prevent long term complications.
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