18,763 research outputs found

    On the Prior Sensitivity of Thompson Sampling

    Full text link
    The empirically successful Thompson Sampling algorithm for stochastic bandits has drawn much interest in understanding its theoretical properties. One important benefit of the algorithm is that it allows domain knowledge to be conveniently encoded as a prior distribution to balance exploration and exploitation more effectively. While it is generally believed that the algorithm's regret is low (high) when the prior is good (bad), little is known about the exact dependence. In this paper, we fully characterize the algorithm's worst-case dependence of regret on the choice of prior, focusing on a special yet representative case. These results also provide insights into the general sensitivity of the algorithm to the choice of priors. In particular, with pp being the prior probability mass of the true reward-generating model, we prove O(T/p)O(\sqrt{T/p}) and O((1p)T)O(\sqrt{(1-p)T}) regret upper bounds for the bad- and good-prior cases, respectively, as well as \emph{matching} lower bounds. Our proofs rely on the discovery of a fundamental property of Thompson Sampling and make heavy use of martingale theory, both of which appear novel in the literature, to the best of our knowledge.Comment: Appears in the 27th International Conference on Algorithmic Learning Theory (ALT), 201

    Plastic nets in agriculture ; a general review of types and applications

    Get PDF
    At the moment, there are a large number of agricultural net types on the market characterized by different structural features such as type of material, type and dimensions of threads, texture, mesh size, porosity / solidity and weight; by radiometric properties like color, transmissivity/reflectivity/shading factor; by physical properties like air permeability and several mechanical characteristics such as tensile stress, strength, elongation at break, and durability. Protection from hail, wind, snow, or strong rainfall in fruit-farming and ornamentals, shading nets for greenhouses and nets moderately modifying the microenvironment for a crop are the most common applications. A systematic review of the current state-of-the-art of structural parameters, standard and regulations, most common agricultural net applications, and their supporting structures has been developed by means of a literature study, technical investigations, concerning characteristics and use of nets. As a result, the survey highlighted that in many cases different, not even similar, net types were adopted for the same application and the same cultivations by various growers. Results show that neither growers nor net producers have clear ideas about the relationship between the net typology optimization for a specific application and the construction parameters of the net. The choice often depends on empirical or economic criteria and not on scientific considerations. Moreover, it appears that scientifically justified technical requirements for nets used in specific agricultural applications have not been established yet

    Model of black hole evolution

    Get PDF
    From the postulate that a black hole can be replaced by a boundary on the apparent horizon with suitable boundary conditions, an unconventional scenario for the evolution emerges. Only an insignificant fraction of energy of order (mG)1(mG)^{-1} is radiated out. The outgoing wave carries a very small part of the quantum mechanical information of the collapsed body, the bulk of the information remaining in the final stable black hole geometry.Comment: 9 pages, harvmac, 3 figures, minor addition

    Soluble models in 2d dilaton gravity

    Get PDF
    A one-parameter class of simple models of two-dimensional dilaton gravity, which can be exactly solved including back-reaction effects, is investigated at both classical and quantum levels. This family contains the RST model as a special case, and it continuously interpolates between models having a flat (Rindler) geometry and a constant curvature metric with a non-trivial dilaton field. The processes of formation of black hole singularities from collapsing matter and Hawking evaporation are considered in detail. Various physical aspects of these geometries are discussed, including the cosmological interpretation.Comment: 15 pages, harvmac, 3 figure

    Fiber Bragg Grating sensors for deformation monitoring of GEM foils in HEP detectors

    Full text link
    Fiber Bragg Grating (FBG) sensors have been so far mainly used in high energy physics (HEP) as high precision positioning and re-positioning sensors and as low cost, easy to mount, radiation hard and low space- consuming temperature and humidity devices. FBGs are also commonly used for very precise strain measurements. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide Gas Electron Multiplier (GEM) foils of the GE1/1 chambers of the Compact Muon Solenoid (CMS) experiment at Large Hadron Collider (LHC) of CERN. A network of FBG sensors has been used to determine the optimal mechanical tension applied and to characterize the mechanical stress applied to the foils. The preliminary results of the test performed on a full size GE1/1 final prototype and possible future developments will be discussed.Comment: Four pages, seven figures. Presented by Michele Caponero at IWASI 2015, Gallipoli (Italy

    Model of black hole evolution

    Get PDF
    From the postulate that a black hole can be replaced by a boundary on the apparent horizon with suitable boundary conditions, an unconventional scenario for the evolution emerges. Only an insignificant fraction of energy of order (mG)1(mG)^{-1} is radiated out. The outgoing wave carries a very small part of the quantum mechanical information of the collapsed body, the bulk of the information remaining in the final stable black hole geometry.Comment: 9 pages, harvmac, 3 figures, minor addition

    Quantum Coherence in Two Dimensions

    Get PDF
    The formation and evaporation of two dimensional black holes are discussed. It is shown that if the radiation in minimal scalars has positive energy, there must be a global event horizon or a naked singularity. The former would imply loss of quantum coherence while the latter would lead to an even worse breakdown of predictability. CPT invariance would suggest that there ought to be past horizons as well. A way in which this could happen with wormholes is described.Comment: 11 pages, DAMTP-R93/15, CALT-68-1861, Tex, 3 appended uuencoded figure

    Condensation of Tubular D2-branes in Magnetic Field Background

    Full text link
    It is known that in the Minkowski vacuum a bunch of IIA superstrings with D0-branes can be blown-up to a supersymmetric tubular D2-brane, which is supported against collapse by the angular momentum generated by crossed electric and magnetic Born-Infeld (BI) fields. In this paper we show how the multiple, smaller tubes with relative angular momentum could condense to a single, larger tube to stabilize the system. Such a phenomena could also be shown in the systems under the Melvin magnetic tube or uniform magnetic field background. However, depending on the magnitude of field strength, a tube in the uniform magnetic field background may split into multiple, smaller tubes with relative angular momentum to stabilize the system.Comment: Latex 10 pages, mention the dynamical joining of the tubes, modify figure
    corecore