7 research outputs found
The Fiber Optic Reel System: A Compact Deployment Solution for Tethered Live-Telemetry Deep-Sea Robots and Sensors
Tethered deep-sea robots and instrument platforms, such as Remotely Operated Vehicles (ROVs) and vertical-profiling or towed instrument arrays, commonly rely on fiber optics for real-time data transmission. Fiber optic tethers used for these applications are either heavily reinforced load-bearing cables used to support lifting and pulling, or bare optical fibers used in non-load bearing applications. Load-bearing tethers directly scale operations for deep-sea robots as the cable diameter, mass, and length typically require heavy winches and large surface support vessels to operate, and also guide the design of the deep-sea robot itself. In an effort to dramatically reduce the physical scale and operational overhead of tethered live-telemetry deep-sea robots and sensors, we have developed the Fiber Optic Reel System (FOReelS). FOReelS utilizes a customized electric fishing reel outfitted with a proprietary hollow-core braided fiber optic fishing line and mechanical termination assembly (FOFL), which offers an extremely small diameter (750 μm) load-bearing (90 lb/400 N breaking strength) tether to support live high-bandwidth data transmission as well as fiber optic sensing applications. The system incorporates a novel epoxy potted data payload system (DPS) that includes high-definition video, integrated lighting, rechargeable battery power, and gigabit ethernet fiber optic telemetry. In this paper we present the complete FOReelS design and field demonstrations to depths exceeding 780 m using small coastal support vessels of opportunity. FOReelS is likely the smallest form factor live-telemetry deep-sea exploration tool currently in existence, with a broad range of future applications envisioned for oceanographic sensing and communication
COBRA Master Class: Providing deep-sea expedition leadership training to accelerate early career advancement
Leading deep-sea research expeditions requires a breadth of training and experience, and the opportunities for Early Career Researchers (ECRs) to obtain focused mentorship on expedition leadership are scarce. To address the need for leadership training in deep-sea expeditionary science, the Crustal Ocean Biosphere Research Accelerator (COBRA) launched a 14-week virtual Master Class with both synchronous and asynchronous components to empower students with the skills and tools to successfully design, propose, and execute deep-sea oceanographic field research. The Master Class offered customized and distributed training approaches and created an open-access syllabus with resources, including reading material, lectures, and on-line resources freely-available on the Master Class website (cobra.pubpub.org). All students were Early Career Researchers (ECRs, defined here as advanced graduate students, postdoctoral scientists, early career faculty, or individuals with substantial industry, government, or NGO experience) and designated throughout as COBRA Fellows. Fellows engaged in topics related to choosing the appropriate deep-sea research asset for their Capstone “dream cruise” project, learning about funding sources and how to tailor proposals to meet those source requirements, and working through an essential checklist of pre-expedition planning and operations. The Master Class covered leading an expedition at sea, at-sea operations, and ship-board etiquette, and the strengths and challenges of telepresence. It also included post-expedition training on data management strategies and report preparation and outputs. Throughout the Master Class, Fellows also discussed education and outreach, international ocean law and policy, and the importance and challenges of team science. Fellows further learned about how to develop concepts respectfully with regard to geographic and cultural considerations of their intended study sites. An assessment of initial outcomes from the first iteration of the COBRA Master Class reinforces the need for such training and shows great promise with one-quarter of the Fellows having submitted a research proposal to national funding agencies within six months of the end of the class. As deep-sea research continues to accelerate in scope and speed, providing equitable access to expedition training is a top priority to enable the next generation of deep-sea science leadership
Rapid Design and Production of Soft Actuators using Dynamic Modeling and Additive Manufacturing for Underwater Soft Actuators
Soft robotic actuators have repeatedly demonstrated their utility for underwater manipulation, particularly in the deep sea with delicate biological creatures and fragile artifacts. Up to this point, soft robotic actuators and gripping modules have been limited to relatively small prototypes that are on the same scale as a human hand. Scaling soft robotic grippers to larger sizes is a non-trivial task due to two major challenges: design and manufacturing. In this work, we present a complete and streamlined workflow of modeling, manufacturing, and testing scalable soft actuators that are directly produced using additive manufacturing methods and finite element modeling (FEA). The presented workflow is an iterative approach that uses information gathered from the FEA\u27s simulation to further improve the simplified known initial model. To demonstrate this new workflow, a series of soft actuator designs were modeled, created and tested. Additionally, a more complex theoretical actuator design that has a non-uniform bending geometry is created and modeled. Once the actuator design matches what is desired, additive manufacturing is used to physically create it. Using this full process, an actuator design is easily scaled to almost three times its original length and is manufactured in under 36 hours. The scaled up actuators are arranged in a custom full gripping array to grasp a cylinder underwater in a predictive manner
The Fiber Optic Reel System: A Compact Deployment Solution for Tethered Live-Telemetry Deep-Sea Robots and Sensors
Tethered deep-sea robots and instrument platforms, such as Remotely Operated Vehicles (ROVs) and vertical-profiling or towed instrument arrays, commonly rely on fiber optics for real-time data transmission. Fiber optic tethers used for these applications are either heavily reinforced load-bearing cables used to support lifting and pulling, or bare optical fibers used in non-load bearing applications. Load-bearing tethers directly scale operations for deep-sea robots as the cable diameter, mass, and length typically require heavy winches and large surface support vessels to operate, and also guide the design of the deep-sea robot itself. In an effort to dramatically reduce the physical scale and operational overhead of tethered live-telemetry deep-sea robots and sensors, we have developed the Fiber Optic Reel System (FOReelS). FOReelS utilizes a customized electric fishing reel outfitted with a proprietary hollow-core braided fiber optic fishing line and mechanical termination assembly (FOFL), which offers an extremely small diameter (750 μm) load-bearing (90 lb/400 N breaking strength) tether to support live high-bandwidth data transmission as well as fiber optic sensing applications. The system incorporates a novel epoxy potted data payload system (DPS) that includes high-definition video, integrated lighting, rechargeable battery power, and gigabit ethernet fiber optic telemetry. In this paper we present the complete FOReelS design and field demonstrations to depths exceeding 780 m using small coastal support vessels of opportunity. FOReelS is likely the smallest form factor live-telemetry deep-sea exploration tool currently in existence, with a broad range of future applications envisioned for oceanographic sensing and communication
DEEPi: A miniaturized, robust, and economical camera and computer system for deep-sea exploration: A miniaturized deep-sea camera system
Cameras are essential components to almost every underwater vehicle including ROV\u27s, AUV\u27s, manned submersibles, ocean observatories, and baited remote underwater video systems (BRUVs). Deep-sea cameras are traditionally expensive components, and are almost exclusively fabricated as 1-atm pressure housings made of aluminum, stainless steel or titanium, combined with custom-made optical viewports. In autonomous recording systems such as BRUVs and biologging animal tags, camera size and form factor directly influences the physical design of the entire system and limits the operational endurance. In this paper, we describe a novel design for DEEPi, a deep-sea imaging and control system based on the Raspberry Pi family of single-board computers. The DEEPi camera is an extremely compact remote head unit (~16 ml volume), can operate to depths of at least 5500 m, and uses a photopolymer 3D-printed shell partially filled with epoxy as a pressure housing. A flat polished borosilicate glass disc serves as the optical viewport, and protects the lens assembly from pressure and water intrusion. The control computer is completely potted in epoxy, and is accessible through a wifi connection. The DEEPi system is described in detail, along with example imagery from deep-sea deployments to depths of up to 1096 m
Chemical Emissions from Cured and Uncured 3D-Printed Ventilator Patient Circuit Medical Parts
Medical shortages during the COVID-19 pandemic saw numerous efforts to 3D print personal protective equipment and treatment supplies. There is, however, little research on the potential biocompatibility of 3D-printed parts using typical polymeric resins as pertaining to volatile organic compounds (VOCs), which have specific relevance for respiratory circuit equipment. Here, we measured VOCs emitted from freshly printed stereolithography (SLA) replacement medical parts using proton transfer reaction mass spectrometry and infrared differential absorption spectroscopy, and particulates using a scanning mobility particle sizer. We observed emission factors for individual VOCs ranging from ∼0.001 to ∼10 ng cm-3 min-1. Emissions were heavily dependent on postprint curing and mildly dependent on the type of SLA resin. Curing reduced the emission of all observed chemicals, and no compounds exceeded the recommended dose of 360 μg/d. VOC emissions steadily decreased for all parts over time, with an average e-folding time scale (time to decrease to 1/e of the starting value) of 2.6 ± 0.9 h
Table_1_COBRA Master Class: Providing deep-sea expedition leadership training to accelerate early career advancement.docx
Leading deep-sea research expeditions requires a breadth of training and experience, and the opportunities for Early Career Researchers (ECRs) to obtain focused mentorship on expedition leadership are scarce. To address the need for leadership training in deep-sea expeditionary science, the Crustal Ocean Biosphere Research Accelerator (COBRA) launched a 14-week virtual Master Class with both synchronous and asynchronous components to empower students with the skills and tools to successfully design, propose, and execute deep-sea oceanographic field research. The Master Class offered customized and distributed training approaches and created an open-access syllabus with resources, including reading material, lectures, and on-line resources freely-available on the Master Class website (cobra.pubpub.org). All students were Early Career Researchers (ECRs, defined here as advanced graduate students, postdoctoral scientists, early career faculty, or individuals with substantial industry, government, or NGO experience) and designated throughout as COBRA Fellows. Fellows engaged in topics related to choosing the appropriate deep-sea research asset for their Capstone “dream cruise” project, learning about funding sources and how to tailor proposals to meet those source requirements, and working through an essential checklist of pre-expedition planning and operations. The Master Class covered leading an expedition at sea, at-sea operations, and ship-board etiquette, and the strengths and challenges of telepresence. It also included post-expedition training on data management strategies and report preparation and outputs. Throughout the Master Class, Fellows also discussed education and outreach, international ocean law and policy, and the importance and challenges of team science. Fellows further learned about how to develop concepts respectfully with regard to geographic and cultural considerations of their intended study sites. An assessment of initial outcomes from the first iteration of the COBRA Master Class reinforces the need for such training and shows great promise with one-quarter of the Fellows having submitted a research proposal to national funding agencies within six months of the end of the class. As deep-sea research continues to accelerate in scope and speed, providing equitable access to expedition training is a top priority to enable the next generation of deep-sea science leadership.</p