1,655 research outputs found

    Are the Health of the Nation's targets attainable? Postal survey of general practitioners' views

    Get PDF
    The Health of the Nation's targets were introduced by the government in 1992 as part of a strategic approach to health.1 We aimed, in 1996, to elicit the views of general practitioners on the attainability of these targets

    The Effect of Penetration Depth on Thermal Contrast of NDT by Thermography

    Get PDF
    Nondestructive evaluation by Thermography (TNDE) is generally classified into two categories, the passive approach and the active approach. The passive approach is usually performed by measuring the natural temperature difference between the ambient and the material or structure to be tested. The active approach, on the other hand, requires the application of an external energy source to stimulate the material for inspection. A laser, a heater, a hot air blower, a high power thermal pulse, mechanical, or electromagnetic energy may provide the energy sources. For the external heating method to inspect materials for defects and imperfection at ambient temperature, a very short burst of heat can be introduced to one of the surfaces or slow heating of the side opposite to the side being observed. Due to the interruption of the heat flow through the defects, the thermal images will reveal the defective area by contrasting against the surrounding good materials. This technique is called transient Thermography, pulse video Thermography, or thermal wave imaging. As an empirical rule, the radius of the smallest defect should be at least one to two times larger than its depth under the surface. Thermography is being used to inspect void, debond, impact damage, and porosity in composite materials. It has been shown that most of the defects and imperfection can be detected. However, the current method of inspection using thermographic technique is more of an art than a practical scientific and engineering approach. The success rate of determining the defect location and defect type is largely depend on the experience of the person who operates thermography system and performs the inspection. The operator has to try different type of heat source, different duration of its application time, as well as experimenting with the thermal image acquisition time and interval during the inspection process. Further-more, the complexity of the lay-up and structure of composites makes it more difficult to determine the optimal operating condition for revealing the defects. In order to develop an optimal thermography inspection procedure, we must understand the thermal behavior inside the material subjected to transient heat in order to interpret the thermal images correctly. Fabrication of finite element models of characteristic defects in composite materials subjected to transient heat will enable the development of appropriate procedure for thermography inspection. Design of phantom defects could be modeled and behavior characterized prior to physically building these test parts. Since production of phantom test parts can be very time consuming and laborious, it is important to design good representative defects

    Measurements and computational analysis of heat transfer and flow in a simulated turbine blade internal cooling passage

    Get PDF
    Visual and quantitative information was obtained on heat transfer and flow in a branched-duct test section that had several significant features of an internal cooling passage of a turbine blade. The objective of this study was to generate a set of experimental data that could be used to validate computer codes for internal cooling systems. Surface heat transfer coefficients and entrance flow conditions were measured at entrance Reynolds numbers of 45,000, 335,000, and 726,000. The heat transfer data were obtained using an Inconel heater sheet attached to the surface and coated with liquid crystals. Visual and quantitative flow field results using particle image velocimetry were also obtained for a plane at mid channel height for a Reynolds number of 45,000. The flow was seeded with polystyrene particles and illuminated by a laser light sheet. Computational results were determined for the same configurations and at matching Reynolds numbers; these surface heat transfer coefficients and flow velocities were computed with a commercially available code. The experimental and computational results were compared. Although some general trends did agree, there were inconsistencies in the temperature patterns as well as in the numerical results. These inconsistencies strongly suggest the need for further computational studies on complicated geometries such as the one studied

    Broadband-tunable LP01_{01} mode frequency shifting by Raman coherence waves in H2_2-filled hollow-core PCF

    Full text link
    When a laser pump beam of sufficient intensity is incident on a Raman-active medium such as hydrogen gas, a strong Stokes signal, red-shifted by the Raman transition frequency {\Omega}R_R, is generated. This is accompanied by the creation of a "coherence wave" of synchronized molecular oscillations with wavevector {\Delta}{\beta} determined by the optical dispersion. Within its lifetime, this coherence wave can be used to shift by {\Omega}R_R the frequency of a third "mixing" signal, provided phase-matching is satisfied, i.e., {\Delta}{\beta} is matched. Conventionally this can be arranged using non-collinear beams or higher-order waveguide modes. Here we report collinear phase-matched frequency shifting of an arbitrary mixing signal using only the fundamental LP01_{01} modes of a hydrogen-filled hollow-core PCF. This is made possible by the S-shaped dispersion curve that occurs around the pressure-tunable zero dispersion point. Phase-matched frequency shifting by 125 THz is possible from the UV to the near-IR. Long interaction lengths and tight modal confinement reduce the peak intensities required, allowing conversion efficiencies in excess of 70%. The system is of great interest in coherent anti-Stokes Raman spectroscopy and for wavelength-conversion of broadband laser sources.Comment: 4 pages, 7 figures, supplementary materia

    Efficient Minimization of Higher Order Submodular Functions using Monotonic Boolean Functions

    Full text link
    Submodular function minimization is a key problem in a wide variety of applications in machine learning, economics, game theory, computer vision, and many others. The general solver has a complexity of O(n3log2n.E+n4logO(1)n)O(n^3 \log^2 n . E +n^4 {\log}^{O(1)} n) where EE is the time required to evaluate the function and nn is the number of variables \cite{Lee2015}. On the other hand, many computer vision and machine learning problems are defined over special subclasses of submodular functions that can be written as the sum of many submodular cost functions defined over cliques containing few variables. In such functions, the pseudo-Boolean (or polynomial) representation \cite{BorosH02} of these subclasses are of degree (or order, or clique size) kk where knk \ll n. In this work, we develop efficient algorithms for the minimization of this useful subclass of submodular functions. To do this, we define novel mapping that transform submodular functions of order kk into quadratic ones. The underlying idea is to use auxiliary variables to model the higher order terms and the transformation is found using a carefully constructed linear program. In particular, we model the auxiliary variables as monotonic Boolean functions, allowing us to obtain a compact transformation using as few auxiliary variables as possible

    Novel sialic acid derivatives lock open the 150-loop of an influenza A virus group-1 sialidase

    Get PDF
    This work was supported by the Medical Research Council and the Scottish Funding Council.Influenza virus sialidase has an essential role in the virus’ life cycle. Two distinct groups of influenza A virus sialidases have been established, that differ in the flexibility of the ‘150-loop’, providing a more open active site in the apo form of the group-1 compared to group-2 enzymes. In this study we show, through a multidisciplinary approach, that novel sialic acid-based derivatives can exploit this structural difference and selectively inhibit the activity of group-1 sialidases. We also demonstrate that group-1 sialidases from drug-resistant mutant influenza viruses are sensitive to these designed compounds. Moreover, we have determined, by protein X-ray crystallography, that these inhibitors lock open the group-1 sialidase flexible 150-loop, in agreement with our molecular modelling prediction. This is the first direct proof that compounds may be developed to selectively target the pandemic A/H1N1, avian A/H5N1 and other group-1 sialidase-containing viruses, based on an open 150-loop conformation of the enzyme.Publisher PDFPeer reviewe

    Conservation of a crystallographic interface suggests a role for β-sheet augmentation in influenza virus NS1 multifunctionality

    Get PDF
    The structure of a monomeric effector domain from influenza A virus NS1 is presented from diffraction data extending to 1.8 Å resolution. Comparison of this and other NS1 effector-domain structures shows conformational changes at a strand–strand packing interface, hinting at a role for β-strand augmentation in NS1 function

    Direct characterisation of tuneable few-femtosecond dispersive-wave pulses in the deep UV

    Get PDF
    Dispersive wave emission (DWE) in gas-filled hollow-core dielectric waveguides is a promising source of tuneable coherent and broadband radiation, but so far the generation of few-femtosecond pulses using this technique has not been demonstrated. Using in-vacuum frequency-resolved optical gating, we directly characterise tuneable 3fs pulses in the deep ultraviolet generated via DWE. Through numerical simulations, we identify that the use of a pressure gradient in the waveguide is critical for the generation of short pulses.Comment: 5 pages, 4 figure
    corecore