992 research outputs found

    Dominance of backward stimulated Raman scattering in gas-filled hollow-core photonic crystal fibers

    Full text link
    Backward stimulated Raman scattering in gases provides a promising route to compression and amplification of a Stokes seed-pulse by counter-propagating against a pump-pulse, as has been already demonstrated in various platforms, mainly in free-space. However, the dynamics governing this process when seeded by noise has not yet been investigated in a fully controllable collinear environment. Here we report the first unambiguous observation of efficient noise-seeded backward stimulated Raman scattering in a hydrogen-filled hollow-core photonic crystal fiber. At high gas pressures, when the backward Raman gain is comparable with, but lower than, the forward gain, we report quantum conversion efficiencies exceeding 40% to the backward Stokes at 683 nm from a narrowband 532-nm-pump. The efficiency increases to 65% when the backward process is seeded by a small amount of back-reflected forward-generated Stokes light. At high pump powers the backward Stokes signal, emitted in a clean fundamental mode and spectrally pure, is unexpectedly always stronger than its forward-propagating counterpart. We attribute this striking observation to the unique temporal dynamics of the interacting fields, which cause the Raman coherence (which takes the form of a moving fine-period Bragg grating) to grow in strength towards the input end of the fiber. A good understanding of this process, together with the rapid development of novel anti-resonant-guiding hollow-core fibers, may lead to improved designs of efficient gas-based Raman lasers and amplifiers operating at wavelengths from the ultraviolet to the mid-infrared.Comment: 6 pages and 8 figures in the main section. 4 pages and 5 figures in the supplementary sectio

    Archeological Survey and Testing of Selected Prehistoric Sites along FM 481, Zavala County, Texas

    Get PDF
    Between April 1981 and December 1982, Texas Department of Transportation (TxDOT) personnel conducted archeological fieldwork along an approximately 13-km segment of FM 481 in northwest Zavala County. The work was part of an evaluation of the impacts of road improvements to a series of sites along the right-of-way. All of the sites but one (41ZV202) were found not to be eligible for listing on the National Register of Historic Places and not to warrant designations as State Archeological Landmarks. Additional work, not reported here, was later conducted at 41ZV202. As part of Work Authorization #57015PD004, the Environmental Affairs Division of TxDOT contracted with the Center for Archaeological Research (CAR) of The University of Texas at San Antonio to report on the fieldwork carried out at the sites during the early 1980s, identify data types warranting additional research, and conduct the appropriate analyses. The current document provides descriptions of the work undertaken along FM 481, assesses the analytical utility of the data types recovered, and reports the results of limited new research of selected data types. Note that all documentation of the project, including notes, photographs, and a sample of recovered artifacts are curated at the Center for Archaeological Research. The sample includes all projectile points, as well as other chipped and ground stone tools, and the debitage recovered for a 10% sample of proveniences

    Physical characterisation of 3C-SiC(001)/SiO2 interface using XPS

    Get PDF
    Normally-on MOSFETs were fabricated on 3C-SiC epilayers using high temperature (1300 °C) wet oxidation process. XPS analysis found little carbon at the MOS interface yet the channel mobility (60 cm2/V.s) is considerably low. Si suboxides (SiOx, x<2) exist at the wet oxidised 3C-SiC/SiO2 interface, which may act as interface traps and degrade the conduction performance

    ACE-ASIA - Regional climatic and atmospheric chemical effects of Asian dust and pollution

    Get PDF
    Although continental-scale plumes of Asian dust and pollution reduce the amount of solar radiation reaching the earth's surface and perturb the chemistry of the atmosphere, our ability to quantify these effects has been limited by a lack of critical observations, particularly of layers above the surface. Comprehensive surface, airborne, shipboard, and satellite measurements of Asian aerosol chemical composition, size, optical properties, and radiative impacts were performed during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) study. Measurements within a massive Chinese dust storm at numerous widely spaced sampling locations revealed the highly complex structure of the atmosphere, in which layers of dust, urban pollution, and biomass-burning smoke may be transported long distances as distinct entities or mixed together. The data allow a first-time assessment of the regional climatic and atmospheric chemical effects of a continental-scale mixture of dust and pollution. Our results show that radiative flux reductions during such episodes are sufficient to cause regional climate change

    Functional oxide as an extreme high-k dielectric towards 4H-SiC MOSFET incorporation

    Get PDF
    MOS Capacitors are demonstrated on 4H-SiC using an octahedral ABO3 ferroic thin-film as a dielectric prepared on several buffer layers. Five samples were prepared: ABO3 on SiC, ABO3 on SiC with a SiO2 buffer (10 nm and 40 nm) and ABO3 on SiC with an Al2O3 buffer (10nm and 40 nm). Depending on the buffer material the oxide forms in either the pyrochlore or perovskite phase. A better lattice match with the Al2O3 buffer yields a perovskite phase with internal switchable dipoles. Hysteresis polarization-voltage loops show an oxide capacitance of ~ 0.2 μF/cm2 in the accumulation region indicating a dielectric constant of ~120
    corecore