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Abstract. MOS Capacitors are demonstrated on 4H-SiC using an octahedral ABO3 ferroic thin-film 

as a dielectric prepared on several buffer layers. Five samples were prepared: ABO3 on SiC, ABO3 

on SiC with a SiO2 buffer (10 nm and 40 nm) and ABO3 on SiC with an Al2O3 buffer (10nm and 40 

nm). Depending on the buffer material the oxide forms in either the pyrochlore or perovskite phase. 

A better lattice match with the Al2O3 buffer yields a perovskite phase with internal switchable 

dipoles. Hysteresis polarization-voltage loops show an oxide capacitance of ~ 0.2 μF/cm2 in the 

accumulation region indicating a dielectric constant of ~120. 

Introduction 

Although silicon carbide MOSFETs are today commercially available the SiC/SiO2 interface still 

limits performance, particularly at lower voltages, from reaching its full potential. An alternative to 

this is to incorporate high-k dielectric insulators. Previous work has yielded moderate success with 

HfO2, Al2O3 and TiO2 amongst other materials. A reduced interface trap density is observed albeit 

with increased gate leakage due to reduced bandgap (although this may be mitigated by a SiO2 

buffer layer) [1-4]. 

 

 
Fig. 1: Comparison of dielectric materials for use on 4H-SiC 



 

 

Fig. 1 shows the trade-off between bandgap and dielectric constant in typical oxide materials 

used on 4H-SiC alongside the significantly increased value achieved in this work. The best solution 

may be an oxide stack to utilise the natural SiO2 oxide of SiC while getting the high-k from 

elsewhere, this is a similar idea to the phosphosilicate glass (PSG) method for SiC where a 

PSG/SiO2 stack can give the low leakage of the SiO2 oxide combined with an improved mobility 

[5]. Complex oxide stacks utilising exotic materials are becoming more common in CMOS 

technology and even in power electronics e.g. high-k stacks in silicon CMOS [6]. In terms of power 

electronics materials such as GaN and diamond, these possess no naturally occurring oxide. High-k 

materials have been demonstrated for GaN [7] and transition metal oxides such as MoO3 for 

diamond (as well as MESFET devices) [8-9]. So an oxide / ferroic stack may indeed provide an 

interesting solution for SiC FETs. 

Due to the orientable polarization contribution, the polarizability of some functional oxides unit 

cells is far stronger than classical high-k. The dielectric constant of these materials is naturally very 

high and may be altered by a phase transition in the material, achieved by the application of an 

external electric field. This could lead to a new paradigm for scaling transistor technology allowing 

an ‘amplification’ of low gate voltage to enable very low switching pulses. In addition, functional 

oxides are recognised as having other important potential applications [10]. 

In this pioneering experiment, oxygen octahedral ABO3 ferroic thin-films (Fig. 2) are deposited 

chemically at temperatures below 700° C on five samples of 4H-SiC. A Ti/Ni ohmic metallisation is 

utilised on the highly nitrogen n-type doped (> 1x1019 cm-3) backside, a low doped 35 μm epitaxial 

layer (4 x 1015 cm-3) is present on top of the substrate. After standard RCA cleaning the buffer 

oxides were deposited and ferroic film grown: one bare SiC, two with thermally grown SiO2 as a 

buffer and two with Al2O3 as a buffer. Silver gate contacts were evaporated on to the samples to 

create MOS capacitor structures. 

 

                                       
Fig. 2: Orientation of the perovskite structure and structure of typical MOSCAP 

 

Results & Discussion 

It is observed the functional oxide may form in either a pyrochlore or perovskite phase depending 

on deposition conditions. X-Ray Diffraction (XRD) analysis (Fig. 3) has shown the oxide to be in a 

preferential perovskite form on the Al2O3 sample while pyrochlore has the predominant texture on 

the others, in particular on SiO2. This is thought to be due to a better lattice match with the Al2O3 

material. A SiC reference sample with no oxide deposited is also included as a comparison. In 

principle, the perovskite phase is more interesting as the pyrochlore does not possess switchable 

internal dipoles. 

 



 

 
Fig. 3: XRD of the ABO3 oxide on SiC, SiO2 and Al2O3. 

 

Hysteresis polarization-voltage loops (P-V) and capacitance-voltage (C-V) characterisation are 

displayed in Fig. 4 for the 10nm Al2O3 – ferroic oxide stack. P-V loops were performed in a Radiant 

LC meter where the low frequency - a low enough frequency where the internal antiparallel dipoles 

are able to respond. It is clear from Fig. 4 that this stack does indeed contain a polarization arising 

from the switchable dipoles of the perovskite structure. This is further evidenced by the hysteresis 

observed in the capacitance-voltage characteristic (derived from the derivative (dP/dV)) of Fig. 5. 

Assuming an Al2O3 thickness of 10 nm and relative dielectric constant of 8 along with a ferroic 

oxide thickness of 200 nm it is possible to derive a high density oxide capacitance of C ~ 0.2 

μF/cm2 in the accumulation region which represents a dielectric constant of ~ 120 (Fig. 5) a factor 

x15 larger than Al2O3 and almost and order of magnitude larger than HfO2.  

 

 

  
Fig. 4: P-V hysteresis loop. Fig. 5: Capacitance-voltage characteristic measured 

from the derivative of P-V at τ = 1 ms (1kHz). 

 

 



 

Summary 

This experiment demonstrates the promise of ferroic materials for integration in to future SiC 

MOSFET devices to further advance this technology. The extremely high k-value yielded here 

potentially allows further scaling of SiC MOSFETs, SiO2 as a gate oxide as well as having 

problems with interface traps is plagued by long term instability, a high-k material should be better 

equipped to deal with high electric fields. Further work needs to be undertaken to perfect the exact 

stack thickness and find the ideal conditions for deposition of the functional oxide. This will be 

aided by further MOS capacitor fabrication and analysis of leakage currents and interface traps 

before integration in to FET devices. 

 

Acknowledgements 

The authors gratefully acknowledge the financial support from Innovate UK and the Silicon 

Carbide: the Route to Energy Resilience (SiCER Project) as well as the kind help of the technical 

staff in the Warwick clean room, particularly Dr. Mark Crouch and Corrine Maltby. 

References 

[1] Q. Chen et al, Applied Physics Letters, 93, pp. 052104 (2008) 

[2] T. Hatayama et al, IEEE Transactions on Electron Devices, 55, pp. 2041 (2007) 

[3] R. Suri et al, Applied Physics Letters, 96, pp. 042903 (2010) 

[4] R. Mahapatra et al, Journal of Vacuum Science & Technology B, 25, pp. 217-223 (2007) 

[5] Y. K. Sharma et al, Materials Science Forum, 778-780, pp. 513-516 (2014) 

[6] E. P. Gusev et al, in IEDM Technical Digest, pp. 451-454 (2001) 

[7] A. Pérez-Tomás et al, Materials Science in Semiconductor Processing, 16, pp. 1336-1345 

(2013) 

[8] S. A. O. Russell et al, Applied Physics Letters, 103, pp. 202112 (2013) 

[9] D. A. J. Moran et al, in 12th IEEE Conference on Nanotechnology, Birmingham, U.K. pp. 1-5 

(2012) 

[10] R. Ramesh et al., Nature Materials 6, 21 - 29 (2007)   

 

 

 


