

Original citation:

Russell, Stephen, Jennings, M. R., Dai, T. X., Li, Fan, Hamilton, Dean P., Fisher, Craig A., Sharma, Yogesh K., Mawby, P. A. (Philip A.) and Pérez-Tomás, Amador. (2017) Functional oxide as an extreme high-k dielectric towards 4H-SiC MOSFET incorporation. Materials Science Forum, 897. pp. 155-158.

Permanent WRAP URL:

http://wrap.warwick.ac.uk/88440

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher's statement:

© Copyright 2017 Trans Tech Publications Inc.

Published version: http://dx.doi.org/10.4028/www.scientific.net/MSF.897.155

A note on versions:

The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP URL' above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

Functional Oxide as an Extreme High-k Dielectric Towards 4H-SiC MOSFET Incorporation

Stephen A. O. Russell ^{1, a}*, Michael R. Jennings ^{1,b}, Tianxiang Dai ^{1,c}, Fan Li ^{1,d}, Dean P. Hamilton ^{1,e}, Craig A. Fisher ^{1,f}, Yogesh K. Sharma ^{2,g}, Philip A. Mawby ^{1,h} and Amador Pérez-Tomás ^{3,i}

¹School of Engineering, The University of Warwick, Coventry, CV4 7AL, UK.

²Dynex Semiconductor Ltd, Doddington Road, Lincoln, LN6 3LF, UK.

³Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain

^aS.Russell@warwick.ac.uk, ^bM.R.Jennings@warwick.ac.uk, ^cT.Dai@warwick.ac.uk, ^dF.Li.1@warwick.ac.uk, ^eD.P.Hamilton@warwick.ac.uk, ^fCraig.A.Fisher@warick.ac.uk, ^gYogesh_Sharma@Dynexsemi.com, ^hP.A.Mawby@warwick.ac.uk, ⁱamador.perez@icn2.cat

Keywords: 4H-SiC MOSCAP, Al₂O₃, High-k, Perovskite, X-Ray Diffraction

Abstract. MOS Capacitors are demonstrated on 4H-SiC using an octahedral ABO₃ ferroic thin-film as a dielectric prepared on several buffer layers. Five samples were prepared: ABO₃ on SiC, ABO₃ on SiC with a SiO₂ buffer (10 nm and 40 nm) and ABO₃ on SiC with an Al₂O₃ buffer (10nm and 40 nm). Depending on the buffer material the oxide forms in either the pyrochlore or perovskite phase. A better lattice match with the Al₂O₃ buffer yields a perovskite phase with internal switchable dipoles. Hysteresis polarization-voltage loops show an oxide capacitance of ~ 0.2 μ F/cm² in the accumulation region indicating a dielectric constant of ~120.

Introduction

Although silicon carbide MOSFETs are today commercially available the SiC/SiO₂ interface still limits performance, particularly at lower voltages, from reaching its full potential. An alternative to this is to incorporate high-*k* dielectric insulators. Previous work has yielded moderate success with HfO₂, Al₂O₃ and TiO₂ amongst other materials. A reduced interface trap density is observed albeit with increased gate leakage due to reduced bandgap (although this may be mitigated by a SiO₂ buffer layer) [1-4].

Fig. 1: Comparison of dielectric materials for use on 4H-SiC

Fig. 1 shows the trade-off between bandgap and dielectric constant in typical oxide materials used on 4H-SiC alongside the significantly increased value achieved in this work. The best solution may be an oxide stack to utilise the natural SiO₂ oxide of SiC while getting the high-k from elsewhere, this is a similar idea to the phosphosilicate glass (PSG) method for SiC where a PSG/SiO₂ stack can give the low leakage of the SiO₂ oxide combined with an improved mobility [5]. Complex oxide stacks utilising exotic materials are becoming more common in CMOS technology and even in power electronics e.g. high-k stacks in silicon CMOS [6]. In terms of power electronics materials such as GaN and diamond, these possess no naturally occurring oxide. High-k materials have been demonstrated for GaN [7] and transition metal oxides such as MoO₃ for diamond (as well as MESFET devices) [8-9]. So an oxide / ferroic stack may indeed provide an interesting solution for SiC FETs.

Due to the orientable polarization contribution, the polarizability of some functional oxides unit cells is far stronger than classical high-*k*. The dielectric constant of these materials is naturally very high and may be altered by a phase transition in the material, achieved by the application of an external electric field. This could lead to a new paradigm for scaling transistor technology allowing an 'amplification' of low gate voltage to enable very low switching pulses. In addition, functional oxides are recognised as having other important potential applications [10].

In this pioneering experiment, oxygen octahedral ABO₃ ferroic thin-films (Fig. 2) are deposited chemically at temperatures below 700° C on five samples of 4H-SiC. A Ti/Ni ohmic metallisation is utilised on the highly nitrogen *n*-type doped (> $1x10^{19}$ cm⁻³) backside, a low doped 35 µm epitaxial layer (4 x 10^{15} cm⁻³) is present on top of the substrate. After standard RCA cleaning the buffer oxides were deposited and ferroic film grown: one bare SiC, two with thermally grown SiO₂ as a buffer and two with Al₂O₃ as a buffer. Silver gate contacts were evaporated on to the samples to create MOS capacitor structures.

Fig. 2: Orientation of the perovskite structure and structure of typical MOSCAP

Results & Discussion

It is observed the functional oxide may form in either a pyrochlore or perovskite phase depending on deposition conditions. X-Ray Diffraction (XRD) analysis (Fig. 3) has shown the oxide to be in a preferential perovskite form on the Al_2O_3 sample while pyrochlore has the predominant texture on the others, in particular on SiO₂. This is thought to be due to a better lattice match with the Al_2O_3 material. A SiC reference sample with no oxide deposited is also included as a comparison. In principle, the perovskite phase is more interesting as the pyrochlore does not possess switchable internal dipoles.

Fig. 3: XRD of the ABO₃ oxide on SiC, SiO₂ and Al₂O₃.

Hysteresis polarization-voltage loops (*P*-*V*) and capacitance-voltage (*C*-*V*) characterisation are displayed in Fig. 4 for the 10nm Al₂O₃ – ferroic oxide stack. *P*-*V* loops were performed in a Radiant *LC* meter where the low frequency - a low enough frequency where the internal antiparallel dipoles are able to respond. It is clear from Fig. 4 that this stack does indeed contain a polarization arising from the switchable dipoles of the perovskite structure. This is further evidenced by the hysteresis observed in the capacitance-voltage characteristic (derived from the derivative (*dP/dV*)) of Fig. 5. Assuming an Al₂O₃ thickness of 10 nm and relative dielectric constant of 8 along with a ferroic oxide thickness of 200 nm it is possible to derive a high density oxide capacitance of *C* ~ 0.2 μ F/cm² in the accumulation region which represents a dielectric constant of ~ 120 (Fig. 5) a factor x15 larger than Al₂O₃ and almost and order of magnitude larger than HfO₂.

Fig. 5: Capacitance-voltage characteristic measured from the derivative of *P*-*V* at $\tau = 1$ ms (1kHz).

Summary

This experiment demonstrates the promise of ferroic materials for integration in to future SiC MOSFET devices to further advance this technology. The extremely high k-value yielded here potentially allows further scaling of SiC MOSFETs, SiO₂ as a gate oxide as well as having problems with interface traps is plagued by long term instability, a high-k material should be better equipped to deal with high electric fields. Further work needs to be undertaken to perfect the exact stack thickness and find the ideal conditions for deposition of the functional oxide. This will be aided by further MOS capacitor fabrication and analysis of leakage currents and interface traps before integration in to FET devices.

Acknowledgements

The authors gratefully acknowledge the financial support from Innovate UK and the Silicon Carbide: the Route to Energy Resilience (SiCER Project) as well as the kind help of the technical staff in the Warwick clean room, particularly Dr. Mark Crouch and Corrine Maltby.

References

[1] Q. Chen et al, Applied Physics Letters, 93, pp. 052104 (2008)

[2] T. Hatayama et al, IEEE Transactions on Electron Devices, 55, pp. 2041 (2007)

[3] R. Suri et al, Applied Physics Letters, 96, pp. 042903 (2010)

[4] R. Mahapatra et al, Journal of Vacuum Science & Technology B, 25, pp. 217-223 (2007)

[5] Y. K. Sharma et al, Materials Science Forum, 778-780, pp. 513-516 (2014)

[6] E. P. Gusev et al, in IEDM Technical Digest, pp. 451-454 (2001)

[7] A. Pérez-Tomás *et al*, Materials Science in Semiconductor Processing, 16, pp. 1336-1345

(2013)

[8] S. A. O. Russell et al, Applied Physics Letters, 103, pp. 202112 (2013)

[9] D. A. J. Moran *et al*, in 12th IEEE Conference on Nanotechnology, Birmingham, U.K. pp. 1-5 (2012)

[10] R. Ramesh *et al.*, Nature Materials 6, 21 - 29 (2007)