36,061 research outputs found

    Exploring the cellular accumulation of metal complexes

    Get PDF
    Transition metal complexes offer great potential as diagnostic and therapeutic agents, and a growing number of biological applications have been explored. To be effective, these complexes must reach their intended target inside the cell. Here we review the cellular accumulation of metal complexes, including their uptake, localization, and efflux. Metal complexes are taken up inside cells through various mechanisms, including passive diffusion and entry through organic and metal transporters. Emphasis is placed on the methods used to examine cellular accumulation, to identify the mechanism(s) of uptake, and to monitor possible efflux. Conjugation strategies that have been employed to improve the cellular uptake characteristics of metal complexes are also described

    Collecting Data from Children Ages 9-13

    Get PDF
    Provides a summary of literature on common methods used to collect data, such as diaries, interviews, observational methods, and surveys. Analyzes age group-specific considerations, advantages, and drawbacks, with tips for improving data quality

    Hydrodynamic and Brownian Fluctuations in Sedimenting Suspensions

    Get PDF
    We use a mesoscopic computer simulation method to study the interplay between hydrodynamic and Brownian fluctuations during steady-state sedimentation of hard sphere particles for Peclet numbers (Pe) ranging from 0.1 to 15. Even when the hydrodynamic interactions are an order of magnitude weaker than Brownian forces, they still induce backflow effects that dominate the reduction of the average sedimentation velocity with increasing particle packing fraction. Velocity fluctuations, on the other hand, begin to show nonequilibrium hydrodynamic character for Pe > 1Comment: 4 pages 4 figures, RevTex, to appear in Phys. Rev. Lett. New version with some minor correction

    The effects of multiple repairs on Inconel 718 weld mechanical properties

    Get PDF
    Inconel 718 weldments were repaired 3, 6, 9, and 13 times using the gas tungsten arc welding process. The welded panels were machined into mechanical test specimens, postweld heat treated, and nondestructively tested. Tensile properties and high cycle fatigue life were evaluated and the results compared to unrepaired weld properties. Mechanical property data were analyzed using the statistical methods of difference in means for tensile properties and difference in log means and Weibull analysis for high cycle fatigue properties. Statistical analysis performed on the data did not show a significant decrease in tensile or high cycle fatigue properties due to the repeated repairs. Some degradation was observed in all properties, however, it was minimal

    Numerical simulation of solar coronal magnetic fields

    Get PDF
    Many aspects of solar activity are believed to be due to the stressing of the coronal magnetic field by footpoint motions at the photosphere. The results are presented of a fully spectral numerical simulation which is the first 3-D time dependent simulation of footpoint stressing in a geometry appropriate for the corona. An arcade is considered that is initially current-free and impose a smooth footpoint motion that produces a twist in the field of approx 2 pi. The footprints were fixed and the evolution was followed until the field relaxes to another current-free state. No evidence was seen for any instability, either ideal or resistive and no evidence for current sheet formation. The most striking feature of the evolution is that in response to photospheric motions, the field expands rapidly upward to minimize the stress. The expansion has two important effects. First, it suppresses the development of dips in the field that could support dense, cool material. For the motions assumed, the magnetic field does not develop a geometry suitable for prominence formation. Second, the expansion inhibits ideal instabilities such as kinking. The results indicate that simple stearing of a single arcade is unlikely to lead to solar activity such as flares or prominences. Effects are discussed that might possibly lead to such activity
    corecore