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We use a mesoscopic computer simulation method to study the interplay between hydrodynamic and
Brownian fluctuations during steady-state sedimentation of hard sphere particles for Peclet numbers
(Pe) ranging from 0.1–15. Even when the hydrodynamic interactions are an order of magnitude weaker
than Brownian forces, they still induce backflow effects that dominate the reduction of the average
sedimentation velocity with increasing particle packing fraction. Velocity fluctuations, on the other
hand, begin to show nonequilibrium hydrodynamic character for Pe> 1.
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Exactly what happens when a collection of particles
sediments through a viscous solvent is a very simple
question to pose, but a remarkably difficult one to answer
[1,2]. In a classic tour de force, Batchelor [3] showed that
the average sedimentation velocity vs of hard spheres
(HS) of hydrodynamic radius a has a lowest order cor-
rection vs � v0s�1� 6:55�� where � is the HS volume
fraction and v0s is the Stokes sedimentation velocity of a
single sphere [1]. This substantial correction to v0s with a
volume fraction is caused by many-body hydrodynamic
backflow effects that greatly complicate efforts to extend
the Batchelor result to higher order in �. Even less is
understood about the velocity fluctuations around the
average, �v � v� vs. Using straightforward physical
arguments, Caflish and Luke [4] predicted that for sedi-
mentation these should diverge as h��v�2i � L, where L is
the smallest container size. This surprising result pro-
voked a flurry of experimental and theoretical studies
(see Ref. [2] for a review). Although it is agreed that
hydrodynamic velocity fluctuations are relatively large,
there is no consensus on the reasons (if any) for the
purported breakdown of the Caflish-Luke argument at
large L.

In addition to the fundamental interest and myriad
applications of sedimentation itself, researchers have
been motivated to investigate this problem because of
its relevance to nonequilibrium statistical mechanics.
Recent studies in this line include a theoretical prediction
of a continuous nonequilibrium noise-driven phase tran-
sition between screened and unscreened phases [5], and an
experimental study predicting a noise-induced effective
‘‘temperature’’ that could aid in developing an ensemble
based statistical mechanics for driven systems [6].

Most theoretical studies of sedimentation have focused
on the limit where Brownian forces are negligible, and
only hydrodynamic interactions (HI) contribute. In other
words, the dimensionless Peclet number

P e �
v0sa
Dcol

; (1)
04=93(22)=220601(4)$22.50 220601
which measures the relative strength of HI and Brownian
forces, was assumed to be infinite. Here Dcol is the equi-
librium self-diffusion constant of the particles. When the
gravitational energy gained by a particle sedimenting
over a distance of one radius a is equal to the reduced
temperature kBT, then Pe � 1 [2], a criterion used to de-
fine the start of the colloidal regime [1]. Sedimentation at
Pe � 1 has many important applications for colloidal
dispersions, as well as for centrifugal diagnostic tech-
niques commonly used for biological macromolecules [1].

In this Letter, we employ a recently proposed meso-
scopic simulation method [7] to investigate steady-state
sedimentation at finite Pe, where Brownian and HI both
contribute to velocity fluctuations. To our knowledge, this
problem has not been investigated in detail before. For all
Pe studied, we find that the average sedimentation veloc-
ity is completely dominated by HI, even when they are
much smaller than the Brownian forces. On the other
hand, we argue that short time velocity fluctuations are
dominated by Brownian forces up to surprisingly large
Pe, while long-time fluctuations have predominantly hy-
drodynamic character even at moderate Pe.

To perform the simulations, we adapt stochastic rota-
tion dynamics (SRD) [7] to the problem of sedimenting
HS. SRD is a particle based method similar in spirit to
the lattice Boltzmann model (LB), which has been ex-
tensively applied to sedimentation [8]. In contrast to LB,
it naturally includes Brownian noise (see, however, [9]).
In SRD a fluid is represented byNf ideal particles of mass
mf. After propagating the particles for a time �tc, the
system is partitioned into cubic cells of volume a30. The
velocities relative to the center of mass velocity of each
separate cell are rotated over a fixed angle around a
random axis. This procedure conserves mass, momentum,
and energy, and yields the correct hydrodynamic (Navier-
Stokes) equations, including the effect of thermal noise
[7]. The fluid particles only interact with each other
through the rotation procedure, which can be viewed as
a coarse graining of particle collisions over time and
space. For this reason, the particles should not be inter-
-1  2004 The American Physical Society
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FIG. 1. Average sedimentation velocity, vs normalized by the
Stokes velocity v0s , as a function of volume fraction � for
various Peclet numbers. The reduction of vs due to hydro-
dynamic backflow effects is independent of Pe. Dashed lines
correspond to two versions of the semiempirical Richardson-
Zaki law vs=v0s � �1���n [1]. The dotted line is another
theoretical prediction taking higher order HI into account
[17]. Ignoring hydrodynamics leads to vs=v

0
s � 1��

(dashed-dotted line).
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preted as individual molecules but rather as a Navier-
Stokes solver that naturally includes Brownian noise.

The colloid-colloid (cc) and colloid-fluid (cf) inter-
actions are modeled by a repulsive potential: �Vci�r� �
10	��ci=r�

2n � ��ci=r�
n 
 1=4� (r � 21=n�ci). For Vcc�r�,

n � 24, which should approximate HS behavior. For
Vcf�r� we set n � 6 and �cf � 0:465�cc, slightly below
half the colloid diameter �cc, which allows for lubrica-
tion. These potentials result in a hydrodynamic radius
a � 0:8�cf . Colloid-colloid and colloid-fluid forces are
integrated with a standard velocity Verlet molecular dy-
namics integrator with a time step t � 1

4 �tc [10].
We now briefly discuss our choice of SRD parameters; a

more detailed account will be published elsewhere [11].
The kinematic viscosity � � �f=�f, where �f is the
viscosity and �f the mass density of the fluid, is an
important parameter because it sets the time scale over
which the momentum (vorticity) diffuses away. In dimen-
sionless form it is desirable to have �=Dcol > Sc �
�=Df  1, where Sc is the Schmidt number and Df the
self-diffusion constant of the fluid particles. Since Dcol <
Df, the first inequality is always satisfied. When Sc � 1
momentum diffusion is dominated by mass diffusion, as
in a gas. If Sc 1 the fluid is liquidlike, the momentum
diffusion is mainly mediated by collisions. To model a
liquidlike system, we choose a relatively small collision
interval (�tc � 0:1a0�mf=kBT�

1=2), leading to Sc � 5. To
prevent compressibility effects, the gravitational field g
was limited such that 0:0067 � vs=cf � 0:1, where cf ���������������������
2kBT=mf

q
is the speed of sound in the fluid. Finally, to

avoid large inertial effects, the particle Reynolds number
Re � vsa=� should be � 1, as in real suspensions [1].
Inevitably there will be a compromise between computa-
tional efficiency and low Re. In our work 0:0016 � Re �
0:24, depending on Pe, which is similar to the choice
made for LB simulations [8,9].

To further test the accuracy of our method, we mea-
sured the Stokes drag Fd on the colloid for various values
of the sphere radius �cs and gravitational field g. By
varying the box size we find excellent agreement with
analytic finite-size corrections [12], from which the infi-
nite box-size limit extrapolates to Fd � "vs � 4#�favs,
as expected for slip boundary conditions [10]. For the
largest box sizes we compared the full velocity field
around a single colloid to the known analytic result [1],
and varied the ratio a0=a, finding that errors scale roughly
linearly with this parameter. We choose a0=a � 1

2 , which
leads to a relative error in the full velocity field of about
2%, similar to what is used in LB [8,9], and sufficiently
accurate for the kinds of questions we investigate [11].

The sedimentation runs were performed in a periodic
box of dimensions Lx � Ly � 32a0 and Lz � 96a0, with
N � 8–800 colloids and Nf � 5� 105 SRD particles,
corresponding to an average of about five particles per
coarse-graining cell volume a30. The system size is similar
220601
to some successful LB simulations [8]. A gravitational
field g, applied in the z direction, was varied to produce
different Pe. The simulations were run from 200 Stokes
times tS (for Pe � 0:1) to 30 000 tS (for Pe � 15), where
tS � a=vs is the time it takes a sphere to sediment one
particle radius. We verified that there was no drift in
averages after about 100 tS, so that the suspension is in
steady state. To check that our system is large enough, we
performed some runs for double the box size described
above, as well as for a0=a � 1

4 , finding no significant
changes in our conclusions [11].

The average sedimentation velocity vs for different
Peclet numbers and different sphere packing fractions
� � 4

3#�a
3, with � the colloid number density, is shown

in Fig. 1. At low densities the results are consistent with
the Batchelor law [3], while at higher densities they
compare well with a number of other forms also derived
for the Pe ! 1 limit [1]. Although one might naively
expect that the effect of HI becomes weaker for Pe< 1,
we observe that the results for all Peclet numbers 0:1 �
Pe � 15 lie exactly on the same curve. Taking into ac-
count only Brownian fluctuations gives vs � v0s�1���
[1], which heavily underestimates backflow effects. This
is strong evidence that purely hydrodynamic arguments
are still valid in an average sense at low Pe.

We next discuss velocity fluctuations around the aver-
age. In colloidal systems the instantaneous velocity fluc-
tuations �v � v� vs are dominated by thermal fluc-
tuations, with a magnitude determined by equipartition:
�v2T � kBT=m. Here m is the mass of a colloid. To disen-
tangle the hydrodynamic fluctuations from thermal fluc-
tuations, we describe spatial and temporal correlations in
the velocity fluctuations. The spatial correlation of the z
component (parallel to the sedimentation) of the velocity
fluctuations can be defined as
-2
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Cz�r� � h�vz�0��vz�r�i; (2)

where h. . .i represents a time average over many particles.
The distance vector r is taken perpendicular to sedimen-
tation, Cz�x�, or parallel to it, Cz�z�. Similarly, the tem-
poral correlation of the z component of the velocity
fluctuations can be defined as

Cz�t� � h�vz�0��vz�t�i; (3)

where h. . .i represents a spatial average.
In Fig. 2 we plot Cz�r�, which shows a positive spatial

correlation along the direction of flow, and an anticorre-
lation perpendicular to the flow, very much like that
observed in experiments [13]. The inset of Fig. 2(a) shows
that at Pe � 1 the correlation in the perpendicular direc-
tion, Cz�x�, is almost negligible compared with the ther-
mal fluctuation strength kBT=m, whereas for larger Pe,
distinct regions of negative amplitude emerge, which
grow with increasing Pe. Similarly, the inset of
Fig. 2(b) shows correlations in the parallel direction
that rapidly increase with Pe. For the highest Peclet
numbers studied (5 � Pe � 15), the amplitudes of these
correlations grow proportionally to v2s , as shown in the
main plots of Fig. 2. Unfortunately, because the division
by v2s amplifies the statistical noise, we are unable to
verify whether this scaling persists for Pe< 5. The mini-
mum in Fig. 2(a) is limited by the box size. We checked
this by simulating larger systems: the correlation size
increased linearly with box dimensions [11], as found
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FIG. 2. Spatial correlation functions of the parallel (z) com-
ponent of the velocity fluctuations as a function of distance
perpendicular (a) and parallel (b) to the external field, for three
different volume fractions [� � 0:02 (gray symbols), � � 0:04
(white), � � 0:086 (black)] and different Peclet numbers. The
correlation functions are scaled with v2s to emphasize hydro-
dynamic fluctuations. The insets show how Cz�r�, scaled with
C�0� � kBT=m, increases with Pe.
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for LB [8], suggesting that the hydrodynamic velocity
fluctuations are unscreened.

The following time scales are important for temporal
correlations: In a liquid, the solvent relaxation time (f,
typically of order 10�14 s [1], is the smallest relevant time
scale. A (larger) Brownian particle experiences random
forces and a friction ". As a consequence, it loses mem-
ory of its initial velocity after a time (B � m=", which is
typically of the order of 10�9 s [1]. For time scales larger
than (B, the particle experiences diffusive behavior and
after a time (D � a2=D (B it has traveled over its own
radius. For correct coarse-grained temporal behavior, the
time scales do not need to be identical to the underlying
fluid, but it is important that they are clearly separated
[9]. This is indeed the case for our choice of SRD pa-
rameters, where (f � �tc � 0:1, (B � 2, and (D � 200

(in units a0�mf=kBT�
1=2). Since the Stokes time tS �

a=vs � (D=Pe must be  (B, this sets a limit on the
maximum Pe number for these parameters.

Figure 3 shows the temporal correlation functions
along the direction of sedimentation. At short times the
behavior is well described by exponential Brownian re-
laxation [1]: Cshort�t� � �v2T exp��t=(B�. At intermediate
times it follows the well known algebraic long-time tail
Clong�t� � Bt�3=2, associated with the fact that momen-
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FIG. 3. Temporal correlation functions of the z component of
the velocity fluctuations for � � 0:02 and different Peclet
numbers. (a) Time is scaled with the Brownian relaxation
time (B � m=" and the velocities are scaled with the thermal
fluctuation strength kBT=m. The straight line is the hydro-
dynamic long-time tail Bt�3=2 with B�1 � 12�fkBT�#��

3=2

[14]. The results for Pe � 1 are indistinguishable. (b) Time is
scaled with the Stokes time tS � a=vs and Cz�t� is scaled with
v2s to highlight hydrodynamic velocity fluctuations. The
straight line is a fit demonstrating the exponential decay of
nonequilibrium hydrodynamic fluctuations.
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tum fluctuations diffuse away at a finite rate determined
by the kinematic viscosity �. Analytical equilibrium cal-
culations of B [14] exactly fit the low Pe nonequilibrium
results in Fig. 3(a) with no adjustable parameters!

Several experimental studies [13] on the sedimentation
of non-Brownian (Pe ! 1) particles have found an ex-
ponential relaxation of the form

Cz�t� � �v2H exp��t=(H�: (4)

This nonequilibrium hydrodynamic effect takes place
over much longer time scales than the initial exponential
Brownian relaxation. The double-logarithmic Fig. 3(a)
shows that a new mode of fluctuations becomes distin-
guishable in our simulations for Pe> 1. In Fig. 3(b) the
correlation functions are scaled with v2s to highlight the
nonequilibrium hydrodynamic fluctuations. For Pe � 10
the fluctuations scale onto a single exponential master
curve, similar to the high-Pe experiments [13], whereas
for lower Pe deviations are seen. From the exponential fit
to Eq. (4), we can estimate the relaxation time (H and the
amplitude �v2H of the hydrodynamic fluctuations. These
are shown in Fig. 4 for different volume fractions �. The
scalings of the relaxation time and fluctuation amplitude
with � are consistent with �v2H � v2sL�=�

4
3#a� and

(2H � L2=�v2H � t2S
4
3#L=��a�, predicted for unscreened

hydrodynamic fluctuations by a simple heuristic argu-
ment [15] akin to that used by Caflish and Luke [4].

As seen in Fig. 3, the short time velocity fluctuations
are dominated by thermal fluctuations at all Peclet num-
bers studied. By comparing �vH with �vT , we estimate
the critical Pe�, above which hydrodynamic fluctuations
are larger than thermal fluctuations for all t [16]:

�vH
�vT

�
�kBTL��c�

1=2

"
Pe �

Pe

Pe�
: (5)

For example, for polystyrene colloids in water (� �
10�3 Pa s, T � 300 K, �c � 1050 kgm�3), Pe� �
	�a=10�14m�=��L=a��1=2. For � � 0:001, a � 10�6 m,
and L=a � 100 (smaller than the screening length at
this concentration [13,16]), we find a large value:
Pe� � 3� 104.

In conclusion, we have adapted a mesoscopic simula-
tion method, SRD [7], to study sedimentation at finite
Peclet numbers. Hydrodynamic backflow corrections re-
220601
duce the average sedimentation velocity vs, irrespective
of Pe. Thus, even when HI are relatively small, Brownian
dynamics simulation methods [1] will yield qualitatively
incorrect results for this problem. Long-time nonequilib-
rium velocity fluctuations become evident for Pe> 1, and
scale like those for Pe ! 1, while short time fluctuations
are dominated by Brownian forces up to surprisingly
large Pe. In other words, neither hydrodynamic interac-
tions nor Brownian forces can be ignored for a significant
parameter regime.
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