513 research outputs found

    The AFHSC-Division of GEIS Operations Predictive Surveillance Program: a multidisciplinary approach for the early detection and response to disease outbreaks

    Get PDF
    The Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System Operations (AFHSC-GEIS) initiated a coordinated, multidisciplinary program to link data sets and information derived from eco-climatic remote sensing activities, ecologic niche modeling, arthropod vector, animal disease-host/reservoir, and human disease surveillance for febrile illnesses, into a predictive surveillance program that generates advisories and alerts on emerging infectious disease outbreaks. The program’s ultimate goal is pro-active public health practice through pre-event preparedness, prevention and control, and response decision-making and prioritization. This multidisciplinary program is rooted in over 10 years experience in predictive surveillance for Rift Valley fever outbreaks in Eastern Africa. The AFHSC-GEIS Rift Valley fever project is based on the identification and use of disease-emergence critical detection points as reliable signals for increased outbreak risk. The AFHSC-GEIS predictive surveillance program has formalized the Rift Valley fever project into a structured template for extending predictive surveillance capability to other Department of Defense (DoD)-priority vector- and water-borne, and zoonotic diseases and geographic areas. These include leishmaniasis, malaria, and Crimea-Congo and other viral hemorrhagic fevers in Central Asia and Africa, dengue fever in Asia and the Americas, Japanese encephalitis (JE) and chikungunya fever in Asia, and rickettsial and other tick-borne infections in the U.S., Africa and Asia

    Improving access for community health and sub-acute outpatient services: protocol for a stepped wedge cluster randomised controlled trial

    Get PDF
    BACKGROUND: Waiting lists for treatment are common in outpatient and community services, Existing methods for managing access and triage to these services can lead to inequities in service delivery, inefficiencies and divert resources from frontline care. Evidence from two controlled studies indicates that an alternative to the traditional &quot;waitlist and triage&quot; model known as STAT (Specific Timely Appointments for Triage) may be successful in reducing waiting times without adversely affecting other aspects of patient care. This trial aims to test whether the model is cost effective in reducing waiting time across multiple services, and to measure the impact on service provision, health-related quality of life and patient satisfaction. METHODS/DESIGN: A stepped wedge cluster randomised controlled trial has been designed to evaluate the impact of the STAT model in 8 community health and outpatient services. The primary outcome will be waiting time from referral to first appointment. Secondary outcomes will be nature and quantity of service received (collected from all patients attending the service during the study period and health-related quality of life (AQOL-8D), patient satisfaction, health care utilisation and cost data (collected from a subgroup of patients at initial assessment and after 12&nbsp;weeks). Data will be analysed with a multiple multi-level random-effects regression model that allows for cluster effects. An economic evaluation will be undertaken alongside the clinical trial. DISCUSSION: This paper outlines the study protocol for a fully powered prospective stepped wedge cluster randomised controlled trial (SWCRCT) to establish whether the STAT model of access and triage can reduce waiting times applied across multiple settings, without increasing health service costs or adversely impacting on other aspects of patient care. If successful, it will provide evidence for the effectiveness of a practical model of access that can substantially reduce waiting time for outpatient and community services with subsequent benefits for both efficiency of health systems and patient care.<br /

    The Astropy Problem

    Get PDF
    The Astropy Project (http://astropy.org) is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Despite this, the project has always been and remains to this day effectively unfunded. Further, contributors receive little or no formal recognition for creating and supporting what is now critical software. This paper explores the problem in detail, outlines possible solutions to correct this, and presents a few suggestions on how to address the sustainability of general purpose astronomical software

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Recruitment and baseline data of the Aging and Cognitive Health Evaluation in Elders (ACHIEVE) study: A randomized trial of a hearing loss intervention for reducing cognitive decline

    Get PDF
    INTRODUCTIONHearing loss is highly prevalent among older adults and independently associated with cognitive decline. The Aging and Cognitive Health Evaluation in Elders (ACHIEVE) study is a multicenter randomized control trial (partially nested within the infrastructure of an observational cohort study, the Atherosclerosis Risk in Communities [ARIC] study) to determine the efficacy of best-practice hearing treatment to reduce cognitive decline over 3 years. The goal of this paper is to describe the recruitment process and baseline results.METHODSMultiple strategies were used to recruit community-dwelling 70–84-year-old participants with adult-onset hearing loss who were free of substantial cognitive impairment from the parent ARIC study and de novo from the surrounding communities into the trial. Participants completed telephone screening, an in-person hearing, vision, and cognitive screening, and a comprehensive hearing assessment to determine eligibility.RESULTSOver a 24-month period, 3004 telephone screenings resulted in 2344 in-person hearing, vision, and cognition screenings and 1294 comprehensive hearing screenings. Among 1102 eligible, 977 were randomized into the trial (median age = 76.4 years; 53.5% female; 87.8% White; 53.3% held a Bachelor's degree or higher). Participants recruited through the ARIC study were recruited much earlier and were less likely to report hearing loss interfered with their quality of life relative to participants recruited de novo from the community. Minor differences in baseline hearing or health characteristics were found by recruitment route (i.e., ARIC study or de novo) and by study site.DISCUSSIONThe ACHIEVE study successfully completed enrollment over 2 years that met originally projected rates of recruitment. Substantial operational and scientific efficiencies during study startup were achieved through embedding this trial within the infrastructure of a longstanding and well-established observational study.HighlightsThe ACHIEVE study tests the effect of hearing intervention on cognitive decline.The study is partially nested within an existing cohort study.Over 2 years, 977 participants recruited and enrolled.Eligibility assessed by telephone and in-person for hearing, vision, and cognitive screening.The ACHIEVE study findings will have significant public health implications
    corecore