604 research outputs found
UV-induced refractive index changes in germanosilicate fibres
Photo-induced guided index changes approaching at both 633nm and 1.55µm, measured using a simple interferometric technique, are reported in germanosilicate single-mode optical fibres exposed to 266nm from the side
Sommerfeld Enhancement of DM Annihilation: Resonance Structure, Freeze-Out and CMB Spectral Bound
In the last few years there has been some interest in WIMP Dark Matter models
featuring a velocity dependent cross section through the Sommerfeld enhancement
mechanism, which is a nonrelativistic effect due to massive bosons in the dark
sector. In the first part of this article, we find analytic expressions for the
boost factor for three different model potentials, the Coulomb potential, the
spherical well and the spherical cone well and compare with the numerical
solution of the Yukawa potential. We find that the resonance pattern of all the
potentials can be cast into the same universal form. In the second part of the
article we perform a detailed computation of the Dark Matter relic density for
models having Sommerfeld enhancement by solving the Boltzmann equation
numerically. We calculate the expected distortions of the CMB blackbody
spectrum from WIMP annihilations and compare these to the bounds set by FIRAS.
We conclude that only a small part of the parameter space can be ruled out by
the FIRAS observations.Comment: 15 pages, 15 figures, version accepted by JCA
PAMELA, DAMA, INTEGRAL and Signatures of Metastable Excited WIMPs
Models of dark matter with ~ GeV scale force mediators provide attractive
explanations of many high energy anomalies, including PAMELA, ATIC, and the
WMAP haze. At the same time, by exploiting the ~ MeV scale excited states that
are automatically present in such theories, these models naturally explain the
DAMA/LIBRA and INTEGRAL signals through the inelastic dark matter (iDM) and
exciting dark matter (XDM) scenarios, respectively. Interestingly, with only
weak kinetic mixing to hypercharge to mediate decays, the lifetime of excited
states with delta < 2 m_e is longer than the age of the universe. The
fractional relic abundance of these excited states depends on the temperature
of kinetic decoupling, but can be appreciable. There could easily be other
mechanisms for rapid decay, but the consequences of such long-lived states are
intriguing. We find that CDMS constrains the fractional relic population of
~100 keV states to be <~ 10^-2, for a 1 TeV WIMP with sigma_n = 10^-40 cm^2.
Upcoming searches at CDMS, as well as xenon, silicon, and argon targets, can
push this limit significantly lower. We also consider the possibility that the
DAMA excitation occurs from a metastable state into the XDM state, which decays
via e+e- emission, which allows lighter states to explain the INTEGRAL signal
due to the small kinetic energies required. Such models yield dramatic signals
from down-scattering, with spectra peaking at high energies, sometimes as high
as ~1 MeV, well outside the usual search windows. Such signals would be visible
at future Ar and Si experiments, and may be visible at Ge and Xe experiments.
We also consider other XDM models involving ~ 500 keV metastable states, and
find they can allow lighter WIMPs to explain INTEGRAL as well.Comment: 22 pages, 7 figure
Non-Abelian Dark Sectors and Their Collider Signatures
Motivated by the recent proliferation of observed astrophysical anomalies,
Arkani-Hamed et al. have proposed a model in which dark matter is charged under
a non-abelian "dark" gauge symmetry that is broken at ~ 1 GeV. In this paper,
we present a survey of concrete models realizing such a scenario, followed by a
largely model-independent study of collider phenomenology relevant to the
Tevatron and the LHC. We address some model building issues that are easily
surmounted to accommodate the astrophysics. While SUSY is not necessary, we
argue that it is theoretically well-motivated because the GeV scale is
automatically generated. Specifically, we propose a novel mechanism by which
mixed D-terms in the dark sector induce either SUSY breaking or a super-Higgs
mechanism precisely at a GeV. Furthermore, we elaborate on the original
proposal of Arkani-Hamed et al. in which the dark matter acts as a messenger of
gauge mediation to the dark sector. In our collider analysis we present
cross-sections for dominant production channels and lifetime estimates for
primary decay modes. We find that dark gauge bosons can be produced at the
Tevatron and the LHC, either through a process analogous to prompt photon
production or through a rare Z decay channel. Dark gauge bosons will decay back
to the SM via "lepton jets" which typically contain >2 and as many as 8
leptons, significantly improving their discovery potential. Since SUSY decays
from the MSSM will eventually cascade down to these lepton jets, the discovery
potential for direct electroweak-ino production may also be improved.
Exploiting the unique kinematics, we find that it is possible to reconstruct
the mass of the MSSM LSP. We also present decay channels with displaced
vertices and multiple leptons with partially correlated impact parameters.Comment: 44 pages, 25 figures, version published in JHE
Abelian Hidden Sectors at a GeV
We discuss mechanisms for naturally generating GeV-scale hidden sectors in
the context of weak-scale supersymmetry. Such low mass scales can arise when
hidden sectors are more weakly coupled to supersymmetry breaking than the
visible sector, as happens when supersymmetry breaking is communicated to the
visible sector by gauge interactions under which the hidden sector is
uncharged, or if the hidden sector is sequestered from gravity-mediated
supersymmetry breaking. We study these mechanisms in detail in the context of
gauge and gaugino mediation, and present specific models of Abelian GeV-scale
hidden sectors. In particular, we discuss kinetic mixing of a U(1)_x gauge
force with hypercharge, singlets or bi-fundamentals which couple to both
sectors, and additional loop effects. Finally, we investigate the possible
relevance of such sectors for dark matter phenomenology, as well as for low-
and high-energy collider searches.Comment: 43 pages, no figures; v2: to match JHEP versio
The Inert Doublet Model and Inelastic Dark Matter
The annual modulation observed by DAMA/NaI and DAMA/Libra may be interpreted
in terms of elastic or inelastic scattering of dark matter particles. In this
paper we confront these two scenarios within the framework of a very simple
extension of the Standard Model, the Inert Doublet Model (IDM). In this model
the dark matter candidate is a scalar, the lightest component of an extra Higgs
doublet. We first revisit the case for the elastic scattering of a light scalar
WIMP, M_DM~10 GeV, a scenario which requires that a fraction of events in DAMA
are channelled. Second we consider the possibility of inelastic Dark Matter
(iDM). This option is technically natural in the IDM, in the sense that the
mass splitting between the lightest and next-to-lightest neutral scalars may be
protected by a Peccei-Quinn (PQ) symmetry. We show that candidates with a mass
M_DM between ~535 GeV and ~50 TeV may reproduce the DAMA data and have a cosmic
abundance in agreement with WMAP. This range may be extended to candidates as
light as ~50 GeV if we exploit the possibility that the approximate PQ symmetry
is effectively conserved and that a primordial asymmetry in the dark sector may
survive until freeze-out.Comment: 16 pages, 7 figures. v2: minor changes and discussion on the
embedding in SO(10) added. v3: matches the published version in JCA
Mapping Vesta: First Results from Dawn’s Survey Orbit
The geologic objectives of the Dawn Mission [1] are
to derive Vesta’s shape, map the surface geology,
understand the geological context and contribute to
the determination of the asteroids’ origin and
evolution.Geomorphology and distribution of surface features
will provide evidence for impact cratering, tectonic activity, volcanism, and regolith processes. Spectral
measurements of the surface will provide evidence of
the compositional characteristics of geological units.
Age information, as derived from crater sizefrequency
distributions, provides the stratigraphic
context for the structural and compositional mapping
results, thus revealing the geologic history of Vesta.
We present here the first results of the Dawn mission
from data collected during the approach to Vesta, and
its first discrete orbit phase – the Survey Orbit, which
lasts 21 days after the spacecraft had established a
circular polar orbit at a radius of ~3000 km with a
beta angle of 10°-15°
Transient domain walls and lepton asymmetry in the Left-Right symmetric model
It is shown that the dynamics of domain walls in Left-Right symmetric models,
separating respective regions of unbroken SU(2)_L and SU(2)_R in the early
universe, can give rise to baryogenesis via leptogenesis. Neutrinos have a
spatially varying complex mass matrix due to CP-violating scalar condensates in
the domain wall. The motion of the wall through the plasma generates a flux of
lepton number across the wall which is converted to a lepton asymmetry by
helicity-flipping scatterings. Subsequent processing of the lepton excess by
sphalerons results in the observed baryon asymmetry, for a range of parameters
in Left-Right symmetric models.Comment: v2 version accepted for publication in Phys. Rev. D. Discussion in
Introduction and Conclusion sharpened. Equation (12) corrected. 16 pages, 3
figure files, RevTeX4 styl
The PAMELA Positron Excess from Annihilations into a Light Boson
Recently published results from the PAMELA experiment have shown conclusive
evidence for an excess of positrons at high (~ 10 - 100 GeV) energies,
confirming earlier indications from HEAT and AMS-01. Such a signal is generally
expected from dark matter annihilations. However, the hard positron spectrum
and large amplitude are difficult to achieve in most conventional WIMP models.
The absence of any associated excess in anti-protons is highly constraining on
any model with hadronic annihilation modes. We revisit an earlier proposal,
whereby the dark matter annihilates into a new light (<~GeV) boson phi, which
is kinematically constrained to go to hard leptonic states, without
anti-protons or pi0's. We find this provides a very good fit to the data. The
light boson naturally provides a mechanism by which large cross sections can be
achieved through the Sommerfeld enhancement, as was recently proposed.
Depending on the mass of the WIMP, the rise may continue above 300 GeV, the
extent of PAMELA's ability to discriminate electrons and positrons.Comment: 4 pages, 2 figures; v3 separated pions plot, references adde
the geomorphology of ceres
### INTRODUCTION Observations of Ceres, the largest object in the asteroid belt, have suggested that the dwarf planet is a geologically differentiated body with a silicate core and an ice-rich mantle. Data acquired by the Dawn spacecraft were used to perform a three-dimensional characterization of the surface to determine if the geomorphology of Ceres is consistent with the models of an icy interior. ### RATIONALE Instruments on Dawn have collected data at a variety of resolutions, including both clear-filter and color images. Digital terrain models have been derived from stereo images. A preliminary 1:10 M scale geologic map of Ceres was constructed using images obtained during the Approach and Survey orbital phases of the mission. We used the map, along with higher-resolution imagery, to assess the geology of Ceres at the global scale, to identify geomorphic and structural features, and to determine the geologic processes that have affected Ceres globally. ### RESULTS Impact craters are the most prevalent geomorphic feature on Ceres, and several of the craters have fractured floors. Geomorphic analysis of the fracture patterns shows that they are similar to lunar Floor-Fractured Craters (FFCs), and an analysis of the depth-to-diameter ratios shows that they are anomalously shallow compared with average Ceres craters. Both of these factors are consistent with FFC floors being uplifted due to an intrusion of cryomagma. Kilometer-scale linear structures cross much of Ceres. Some of these structures are oriented radially to large craters and most likely formed due to impact processes. However, a set of linear structures present only on a topographically high region do not have any obvious relationship to impact craters. Geomorphic analysis suggests that they represent subsurface faults and might have formed due to crustal uplift by cryomagmatic intrusion. Domes identified across the Ceres surface present a wide range of sizes ( 100 km), basal shapes, and profiles. Whether a single formation mechanism is responsible for their formation is still an open question. Cryovolcanic extrusion is one plausible process for the larger domes, although most small mounds (<10-km diameter) are more likely to be impact debris. Differences in lobate flow morphology suggest that multiple emplacement processes have operated on Ceres, where three types of flows have been identified. Type 1 flows are morphologically similar to ice-cored flows on Earth and Mars. Type 2 flows are comparable to long-runout landslides. Type 3 flows morphologically resemble the fluidized ejecta blankets of rampart craters, which are hypothesized to form by impact into ice-rich ground. ### CONCLUSION The global trend of lobate flows suggests that differences in their geomorphology could be explained by variations in ice content and temperature at the near surface. Geomorphic and topographic analyses of the FFCs suggest that cryomagmatism is active on Ceres, whereas the large domes are possibly formed by extrusions of cryolava. Although spectroscopic analysis to date has identified water ice in only one location on Ceres, the identification of these potentially ice-related features suggests that there may be more ice within localized regions of Ceres' crust. ![Figure][1] Dawn high-altitude mapping orbit imagery (140 meters per pixel) of example morphologic features. ( A ) Occator crater; arrows point to floor fractures. ( B ) Linear structures, denoted by arrows. ( C ) A large dome at 42° N, 10° E, visible in the elevation map. ( D ) A small mound at 45.5° S, 295.7° E. ( E ) Type 1 lobate flow; arrows point to the flow front. Analysis of Dawn spacecraft Framing Camera image data allows evaluation of the topography and geomorphology of features on the surface of Ceres. The dwarf planet is dominated by numerous craters, but other features are also common. Linear structures include both those associated with impact craters and those that do not appear to have any correlation to an impact event. Abundant lobate flows are identified, and numerous domical features are found at a range of scales. Features suggestive of near-surface ice, cryomagmatism, and cryovolcanism have been identified. Although spectroscopic analysis has currently detected surface water ice at only one location on Ceres, the identification of these potentially ice-related features suggests that there may be at least some ice in localized regions in the crust. [1]: pending:ye
- …