1,549 research outputs found

    Determination and Prediction of Some Soil Properties Using Partial Least Square (PLS) Calibration and Mid-Infra Red (MIR) Spectroscopy Analysis

    Full text link
    Soil chemical, physical and biological analyses are a crucial but often expensive and time-consuming step in the characterization of soils. Rapid and accurate predictions and relatively simple methods are ideally needed for soil analysis. The objective of this study was to predict some soil properties (e.g. pH, EC, total C, total N,C/N, NH4-N, NO3-N, P, K, clay, silt, and sand and soil microbial biomass carbon) across the Wickepin farm during summer season using a Mid-Infra Red - Partial Least Square (MIR–PLS) method. The 291 soil samples were analyzed bothwith soil extraction procedure and MIR Spectrometer. Calibrations were developed between MIR spectral data and the results of soil extraction procedures. Results using the PLS-MIR showed that MIR-predicted values were almost as highly correlated to the measured value obtained by the soil extraction method of total carbon, total nitrogen and soil pH. Values for EC, NH4-N, NO3-N, C/N, P, K, clay, silt, sand, and soil microbial biomass carbon were not successfully predicted by the MIR – PLS technique. There was a tendency for these factors to correlate with the MIR predicted value, but the correlation values were very low. This study has confirmed that the MIR-PLS method can be used to predict some soil properties based on calibrations of MIR values

    Development of IPv6

    Full text link
    Recent advances in collaborative theory and interactive archetypes cooperate in or- der to realize the lookaside buffer. Given the current status of cacheable epistemologies, researchers shockingly desire the understanding of redundancy. We introduce a novel application for the deployment of access points (SheldInditer), showing that the seminal psychoacoustic algorithm for the unproven unification of 64 bit architectures and symmetric encryption is recursively enumerable. Of course, this is not always the case

    A review of methods for detecting rats at low densities, with implications for surveillance

    Get PDF
    Invasive rats are the biggest threat to island biodiversity world-wide. Though the ecological impacts of rats on insular biota are well documented, introduced rats present a difficult problem for detection and management. In recent decades, improved approaches have allowed for island-wide eradications of invasive rats on small-medium sized islands and suppression on large islands, although both these still represent a formidable logistical and financial challenge. A key aspect of eradication or suppression and ongoing management is the ability to detect the presence of rats, especially at low densities. Here we review recent developments in the field of rat surveillance and summarise current published literature to recommend practices and the factors to consider when developing a surveillance program for either eradication or suppression plans. Of 51 empirical studies covering 17 countries, 58% were from New Zealand. Although detecting rats at low density is extremely challenging, advances over the past 15 years, have significantly improved our ability to detect rats. Motion-sensored cameras and rodent detection dogs have greatly improved our ability to detect rats at low densities, with cameras consistently showing an ability to detect rats at lower densities than other techniques. Rodent detection dogs are also able to reliably detect even an individual rat, although there are challenges to their widespread adoption, particularly in developing countries, due to the cost and skills required for their training and maintenance. New monitoring devices, the use of eDNA and drones represent current and future innovations to improve detection

    Enantioselective Synthesis of a Hydroxymethyl-cis-1,3-cyclopentenediol Building Block

    Get PDF
    A brief, enantioselective synthesis of a hydroxymethyl-cis-1,3-cyclopentenediol building block is presented. This scaffold allows access to the cis-1,3-cyclopentanediol fragments found in a variety of biologically active natural and non-natural products. This rapid and efficient synthesis is highlighted by the utilization of the palladium-catalyzed enantioselective allylic alkylation of dioxanone substrates to prepare tertiary alcohols

    Unified Enantioselective, Convergent Synthetic Approach Toward the Furanobutenolide-Derived Polycyclic Norcembranoid Diterpenes: Synthesis of a Series of Ineleganoloids by Oxidation State Manipulation of the Carbocyclic Core

    Get PDF
    Late-stage synthetic efforts to advance the enatio- and diastereoselectively constructed [6,7,5,5]-fused tetracyclic scaffold toward the polycyclic norditerpenoid ineleganolide are disclosed. The described investigations focus on oxidation-state manipulation around the central cycloheptane ring. Computational evaluation of ground-state energies of dihydroineleganolide is used to rationalize empirical observations and provide insight for further synthetic development, enhancing the understanding of the conformational constraints of these compact polycyclic structures. Advanced synthetic manipulations generated a series of natural product-like compounds termed the ineleganoloids

    Enantioselective, convergent synthesis of the ineleganolide core by a tandem annulation cascade

    Get PDF
    An enantioselective and diastereoselective approach toward the synthesis of the polycyclic norditerpenoid ineleganolide is disclosed. A palladium-catalyzed enantioselective allylic alkylation is employed to stereoselectively construct the requisite chiral tertiary ether and facilitate the synthesis of a 1,3-cis-cyclopentenediol building block. Careful substrate design enabled the convergent assembly of the ineleganolide [6,7,5,5]-tetracyclic scaffold by a diastereoselective cyclopropanation–Cope rearrangement cascade under unusually mild conditions. Computational evaluation of ground state energies of late-stage synthetic intermediates was used to guide synthetic development and aid in the investigation of the conformational rigidity of these highly constrained and compact polycyclic structures. This work represents the first successful synthesis of the core structure of any member of the furanobutenolide-derived polycyclic norcembranoid diterpene family of natural products. Advanced synthetic manipulations generated a series of natural product-like compounds that were shown to possess selective secretory antagonism of either interleukin-5 or interleukin-17. This bioactivity stands in contrast to the known antileukemic activity of ineleganolide and suggests the norcembranoid natural product core may serve as a useful scaffold for the development of diverse therapeutics

    Preparation of 1,5-Dioxaspiro[5.5]undecan-3-one

    Get PDF
    A. 3-Amino-3-(hydroxymethyl)-1,5-dioxaspiro[5.5]undecane. A 1-L single-necked, round-bottomed flask is equipped with an egg-shaped, Teflon®-coated magnetic stirring bar (3.5 cm x 1.5 cm), capped with a rubber septum, flame-dried under vacuum, and cooled under an argon atmosphere (Note 1). After cooling to ambient temperature (21-23 °C), to the flask is added anhydrous N,N-dimethylformamide (DMF, 365 mL, 0.78 M) via cannula. Subsequently, tris(hydroxymethyl)aminomethane hydrochloride (45.0 g, 286 mmol, 1.00 equiv) (Note 2 and 3) is added in a single portion as white crystalline solid. The reaction vessel is immediately resealed with a rubber septum under inert atmosphere and stirring is commenced (Figure 1). To this white suspension is added 1,1-dimethoxycyclohexane (50.0 mL, 47.4 g, 329 mmol, 1.15 equiv) via syringe in one portion (Note 4). Lastly, to the off-white slurry is added para-toluenesulfonic acid monohydrate (p-TsOH•H2O, 1.63 g, 8.57 mmol, 0.03 equiv) as a solid in one portion quickly, immediately replacing the rubber septum to maintain an inert atmosphere
    • …
    corecore