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Abstract Invasive rats are the biggest threat to 
island biodiversity world-wide. Though the ecologi-
cal impacts of rats on insular biota are well docu-
mented, introduced rats present a difficult problem 
for detection and management. In recent decades, 
improved approaches have allowed for island-wide 
eradications of invasive rats on small-medium sized 
islands and suppression on large islands, although 
both these still represent a formidable logistical and 
financial challenge. A key aspect of eradication or 
suppression and ongoing management is the ability 
to detect the presence of rats, especially at low densi-
ties. Here we review recent developments in the field 

of rat surveillance and summarise current published 
literature to recommend practices and the factors to 
consider when developing a surveillance program 
for either eradication or suppression plans. Of 51 
empirical studies covering 17 countries, 58% were 
from New Zealand. Although detecting rats at low 
density is extremely challenging, advances over the 
past 15 years, have significantly improved our ability 
to detect rats. Motion-sensored cameras and rodent 
detection dogs have greatly improved our ability to 
detect rats at low densities, with cameras consistently 
showing an ability to detect rats at lower densities 
than other techniques. Rodent detection dogs are also 
able to reliably detect even an individual rat, although 
there are challenges to their widespread adoption, 
particularly in developing countries, due to the cost 
and skills required for their training and maintenance. 
New monitoring devices, the use of eDNA and drones 
represent current and future innovations to improve 
detection.

Keywords Rat · Monitoring · Surveillance · 
Biosecurity

Introduction

Invasive rat species have been transported widely 
across the globe by humans. Black Rats (Rattus rat-
tus) and brown rats (Rattus norvegicus) have spread 
globally from their native ranges in south-east Asia 
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and China respectively (Aplin et  al. 2011) while 
Pacific rats (Rattus exulans) have spread across the 
Pacific from their native range in Indonesia (Mat-
isoo-Smith and Robins 2009). The introduction of 
these three invasive rats species globally has had 
major negative effects on global biodiversity, with the 
effects most severe on islands (Capizzi et  al. 2014; 
McCreless et  al. 2016; Towns et  al. 2006) and on 
vertebrates (Harper and Bunbury 2015; Jones et  al. 
2008; Spatz et al. 2017). Invasive rats can have major 
impacts on ecosystems (Mulder et al. 2009; Thoresen 
et  al. 2017) as well as causing declines and extinc-
tions in a wide range of vertebrates (Radley et  al. 
2021; Doherty et  al. 2016; Jones et  al. 2016). Con-
sequently, eradications of invasive rats are increas-
ingly being implemented to conserve biodiversity 
(Jones et  al. 2016), primarily on small islands but 
also, recently during ambitious projects to sup-
press or eradicate invasive rats from mainland areas 
(Bell et al. 2019b; Owens 2017). Techniques to sup-
press or eradicate rats are continuously improving 
(Campbell et al. 2015; Keitt et al. 2015; Russell and 
Broome 2016; Spatz et  al. 2022) and suppressions 
and eradications are being achieved on progressively 
larger islands and on areas of large landmasses (Bell 
et  al. 2019b; Martin and Richardson 2019; Springer 
2016). However, given the negative effects of inva-
sive rats on ecosystems, including the vulnerability 
of many native species to rat predation, and the costs 
and challenges of suppression and eradication (Car-
rion et  al. 2011; Griffiths et  al. 2019; Holmes et  al. 
2015), it is critical to effectively detect rats at low 
densities. For suppression programs, this ensures 
that techniques are effective in reducing rat densities 
to a suitable level. If not, then either the density of 
control devices would need to be increased or, if rats 
were becoming habituated to specific control devices, 
new methods may be required. Rat behaviour is also 
an important consideration in eradications. Russell 
et  al. (2010) found that invasive brown rats intro-
duced experimentally to a rat free island had random 
movements, rapid increases in range size for the first 
week, a larger range size at low than high density and 
they conformed to central place foraging behaviour. 
Consequently, control or detection operations need to 
account for these behavioural factors and detecting 
rats at low densities (where home ranges are larger) 

is critical for effective surveillance as part of a bios-
ecurity plan. Effective biosecurity measures involve a 
combination of quarantine, surveillance, and response 
(see Fig. 3 in Russell et  al. 2017b) with the relative 
importance of these components varying depending 
on the species involved, the likelihood of individuals 
reaching the pest-free area and the costs of eradica-
tion (Jarrad et al. 2011; Rout et al. 2014). Given the 
expense of eradicating rats (Donlan and Wilcox 2007; 
Duron et  al. 2017; Holmes et  al. 2015), quarantine 
and surveillance are generally more cost-effective 
options than control (Rout et al. 2011). It may often 
be much cheaper to detect and control incursions of 
individuals, before a self-sustaining population has 
established, rather than detect and control invasions 
where an entire area has been invaded and a self-
sustaining population has established (Moore et  al. 
2010; Puth and Post 2005). However, detecting sin-
gle individual rats is extremely challenging (Russell 
et al. 2005, 2007, 2008a) and there is a period of only 
around 100 days before an incursion can develop into 
an invasion (Bell et  al. 2019b), although sometimes 
sparser detection networks with delayed detection can 
be more cost effective. Whether islands are inhabited 
or uninhabited also adds to the challenges of effec-
tively detecting rats at low densities because some 
surveillance methods (e.g. poison bait stations) may 
be socially unacceptable on inhabited islands.

Russell et  al. (2008b) conducted a thorough 
review of surveillance methods and their recom-
mendation for surveillance devices was a combina-
tion of poison bait stations, live and kill traps, wax 
tags, tracking tunnels, and trained dogs. However, 
since that review, there has been an improved under-
standing of the factors that influence the efficacy of 
existing devices in detecting rats at low densities, 
new surveillance devices have been developed, and 
there is an improved understanding of the types and 
combinations of surveillance devices that would 
be preferred in specific situations (Campbell et  al. 
2015; Gsell et al. 2010; Russell and Broome 2016). 
Hence, given the importance of detecting rats at low 
densities for both suppression and eradication pro-
grams, it is timely to review recent developments in 
the field of rat surveillance and summarise current 
published literature to recommend practices and the 
factors to consider when developing a surveillance 
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program. Lastly, we explore developing novel 
methods to inform and improve future surveillance 
practices.

Methods

To search for recent (up until November 2022) pub-
lished developments in the field of rat surveillance 
we used the Scopus search engine and searched for 
papers containing the keywords Rattus AND sur-
veillance as well as biosecurity OR eradication OR 
detect* OR incursion. We then searched through the 
reference lists in the relevant papers to locate specific 
papers on rat surveillance. We retained all publica-
tions that involved the detection of rats using one of 
more surveillance devices or methods, provided a 
review of devices or methods, modelled rat detec-
tion using devices or methods or investigated factors 
(e.g. pheromones) that might influence rat detection 
rates. Publications were excluded if they detected spe-
cies other than rats of if they simply described that 
rats were detected but presented no data on detec-
tion rates. We also searched the Database of Island 
Invasive Species Eradications (DIISE) and searched 
publications and grey literature related to these eradi-
cations. As a result, we retained 75 publications that 
contained empirical data relevant to rat detection, 
monitoring, and surveillance (Table S1).

Results

Of the 75 publications we retained that related to rat 
detection rates, four were modelling studies, 10 were 
reviews and the remaining 61 reported studies that 
included empirical data on rat detection rates, with a 
total of 23 countries, territories or dependencies rep-
resented. Of the modelling publications, two mod-
elled data from Australia, one modelled data from 
New Zealand and the fourth simply described a mod-
elling technique (i.e. no geographic location). Of the 
10 reviews, four reviewed techniques in a global con-
text, four reviewed techniques for New Zealand, one 
for Australia and one for eight countries in the Medi-
terranean region. The 61 empirical studies showed 
a strong geographic bias (Fig. 1) with most (54.1%) 
coming from New Zealand. Remaining studies were 
more even spread between France (4.9%), Antigua 
and Barbuda, Australia and Hawaii (all 3.3% each) 
and Anguilla, Chagos Archipelago, Falkland Islands, 
Indonesia, Marianas Islands, Mexico, New Caledo-
nia, Palau, Puerto Rico, Saint Vincent and the Gren-
adines, Seychelles, South Georgia, Spain, Tonga, 
Tunisia, United Kingdom and US Virgin Islands (all 
1.6% each). One study was conducted in a laboratory 
(1.7%) (Table S1).

Fifteen of the 75 publications (20.0%) investi-
gated rats in general and did not specify which spe-
cies they investigated, were mainly modelling studies 

Fig. 1  Locations of studies focused on rat detection methods (see Table S1)
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Table 1  Summary of the surveillance devices used in 21 biosecurity programs from the available literature

References Location Species Techniques Number Frequency Timeline

Bagasra et al. 
(2016)

New Zealand Pacific and Black 
Rat

(1) Snap traps 200 Snap traps Triannually Indefinite
(2) Tracking 

tunnels
100 Tracking 

tunnels
Bell and Chal-

lenger (2018)
Redonda I., Anti-

gua & Barbuda
Black Rat (1) Bait stations 

with rodenti-
cide

39 Bait stations Every 2 months Indefinite

Bell and Daltry 
(2014)

Dog Island, 
Anguilla

Black Rat (1) Non-toxic 
chocolate wax, 
candles and 
soap in bait 
stations

324 Bait stations 6–8 weeks Indefinite

(2) Tracking 
tunnels

17 Tracking tun-
nels

(3) Visual 
surveys around 
houses and 
seabird nesting 
areas

Bourgeois et al. 
(2013)

Zembretta Island, 
Tunisia

Black Rat (1) Bait stations 
with rodenti-
cide

20 Bait stations Unknown Indefinite

Capizzi (2020) Mediterranean 
Islands

Brown and Black 
Rat

(1) Bait station 
with rodenti-
cide

Unknown Unknown Indefinite

(2) Snap traps
Carey (2019) Falkland Islands Brown Rat (1) Chew sticks 

with peanut 
butter flavoured 
wax

200 Chew sticks Ad hoc, not more 
than annually

Indefinite

(2) Visual 
searches

Harper et al. 
(2019)

Chagos Archi-
pelago

Black Rat (1) Snap traps 45 Snap traps Ad hoc, when 
visiting islands

Up to 33 months
(2) Wax tags 45 Wax tags
(3) Coconuts
(4) Visual 

searches
Houston (2002) Maninita I., 

Tonga
Pacific Rat (1) Bait stations 

with rodenti-
cide

33 Bait stations Monthly Indefinite



A review of methods for detecting rats at low densities, with implications for surveillance  

1 3
Vol.: (0123456789)

Table 1  (continued)

References Location Species Techniques Number Frequency Timeline

Martin and Rich-
ardson (2019)

Richardson and 
Croxall (2019)

South Georgia Brown Rat (1) Wax tags 146–815 devices Devices used 
3 times over 
2 years

Trap boxes 
checked daily 
when vessel 
moored

Indefinite

(2) Chew sticks 
impregnated 
with vegetable 
oil

Unknown trap 
boxes

(3) Chew cards 
impregnated 
with peanut 
butter

(4) Tracking 
tunnels

(5) Remotely-
activated 
cameras

6. Pre-baited trap 
boxes

Meier and Varn-
ham (2004)

Sangalaki Island, 
Indonesia

Black Rat (1) Bait stations 
with rodenti-
cide

40 Bait stations Unknown Indefinite

Millett et al. 
(2019)

Seychelles Brown and Black 
Rat

(1) Bait sta-
tions that 
are regularly 
maintained and 
refilled

Unknown Unknown Indefinite

(2) Snap traps
(3) Chew sticks

Orueta et al. 
(2005)

Chafarinas 
Archipelago, 
Mediterranean

Black Rat (1) Snap traps 30 Snap traps Unknown Up to 36 months
(2) Bait stations 

with rodenti-
cide

60 Bait stations

Pascal et al. 
(2008)

Lavezzu Island, 
France

Black Rat (1) Bait stations 
with rodenti-
cide

65 Bait stations 2–4 monthly Indefinite

Pearson et al. 
(2019)

Scilly Islands, 
UK

Brown Rat (1) Flavoured 
wax, candles 
and soap

448 monitoring 
stations

Monthly Indefinite

(2) Tracking 
tunnels

(3) Remotely-
activated 
cameras

Robinson and 
Dick (2020)

Green Island, 
Australia

Black Rat (1) Wax tags 6 Wax tags 3–6 monthly Indefinite
(2) Snap traps 6 Snaps traps
(3) Bait station 

with rodenti-
cide

38 Bait stations 
with rodenti-
cide

Ruffino et al. 
(2015)

Bagaud Island, 
France

Black Rat (1) Bait stations 
with rodenti-
cide

20 Bait stations Monthly for 
7 months, then 
bimontly

Indefinite
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or were  those that used detection methods where it 
was not possible to distinguish rat species (e.g. chew 
cards and wax tags). Of the remaining publications, 
45 investigated a single rat species with three publica-
tions investigating Pacific Rats (4.0%), ten investigat-
ing Brown Rats (13.3%) and 23 investigating Black 
Rats (30.7%). Eleven studies investigated two rat spe-
cies with four studies investigating Pacific and Black 
Rats (5.3%) and seven studies investigating Brown 
and Black Rats (9.3%). Lastly, four studies inves-
tigated all three species of invasive rats (5.3%), of 
which three were review papers.

Of the 75 publications, 21 specifically investigated 
surveillance programs across 18 different countries, 
territories or dependencies. Of these 21 surveillance 
programs, 17 targeted a single species with two tar-
geting Pacific Rats (9.5%), four targeting Brown Rats 
(19.0%) and 11 targeting Black Rats (52.4%), while 
four targeted two species with one targeting Pacific 

and Black Rats (4.8%) and three targeting Brown and 
Black Rats (14.3%) (Table 1).

Surveillance methods

A critical requirement of a surveillance device is its 
ability to detect rats at low densities (Barrett et  al. 
2010). Recent advances have included the develop-
ment of new surveillance devices and an improved 
understanding of the efficacy of existing surveillance 
device at low rat densities. One of the most signifi-
cant advances in the past 15 years have been the use 
of motion-sensored cameras to monitor for rats. These 
studies have shown that baited motion-sensored cam-
eras are effective in detecting and monitoring rats at 
low densities and provide a useful surveillance tool 
(Dilks et al. 2020; Martin and Richardson 2019; Ren-
dall et al. 2014; Robinson and Dick 2020; Smart et al. 
2021). Another recent development in rat control 

Table 1  (continued)

References Location Species Techniques Number Frequency Timeline

Russell et al. 
(2010)

New Zealand Brown and Black 
Rat

(1) Snap traps Unknown, in 4 
lines 1 km long

Every 3 months Indefinite

(2) Tracking 
tunnels

(3) Bait stations 
with rodenti-
cide

Veitch (2022a) Browns I., New 
Zealand

Brown Rat (1) Bait stations 
with rodenti-
cide

50 Bait stations Biannually Indefinite

Veitch (2022b) Tiritiri Matangi 
I., New Zea-
land

Pacific Rat (1) Bait stations 
with rodenti-
cide

51 Bait stations Every 3 to 
6 months

Indefinite

Will et al. (2019) Desecheo Island, 
Puerto Rico

Black Rat (1) Bait stations 0–40 Bait sta-
tions

7 and 12 months 
then monthly 
from 17 to 
23 months

Up to 23 months

(2) A24 traps 0–10 A24 traps
(3) Tomahawk 

traps
10–22 Toma-

hawk traps
(4) Chew cards 50–179 Chew 

cards
(5) Remotely-

activated 
cameras

10–21 Remotely-
activated 
cameras

(6) Tracking 
tunnels

0–20 Tracking 
tunnels

Witmer et al. 
(2007)

Buck Island, US 
Virgin Is

Black Rat (1) Snap traps 93 Snap traps Once or twice 
annually

Up to 62 months

The techniques used, the number of devices and the frequency and timeline over which the devices were checked are given for each 
study
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and surveillance is the development of the Goodna-
ture® A24 kill trap where a rat is attracted to bait and 
then killed with a piston fired by a small gas canis-
ter, which can fire up to 24 times (Shiels et al. 2019). 
These traps have not been widely used in surveillance 
(Robinson and Dick 2020) however, so their efficacy 
as a surveillance device has not been well quantified. 
However, Gronwald and Russell (2022) found that not 
all interactions resulted in triggers, and that activity 
and kill rates varied seasonally, indicating they may 
have limits as surveillance devices. Furthermore, 
there is also an issue of rat carcasses from A24s being 
consumed by scavengers, which would prevent the 
detection of rats even when present (Kreuser et  al. 
2022). Studies have also explored the use of trained 
dogs in detecting rats (Gsell et  al. 2010) and found 
that they were very effective in detecting 87% of rats 
on a 63 ha island. Furthermore, very few false posi-
tives were detected and the dogs could cover up to 
40 ha of steep, forested terrain in 6 h. A rodent detec-
tion dog located a Brown Rat on a small (181  ha) 
island off New Zealand within an hour of landing 
(Bassett et  al. 2016) and a simulation study found 
that using trained dogs was the single most effec-
tive method of increasing rat detection probabilities 
(Kim et al. 2020). However, Glen et al. (2018) found 
that detection distances were small with an effective 
distance of only 8.4 m either side of the search path 
so the limits of what can be achieved with detection 
dogs needs to be understood if they are to provide an 
effective method of detecting rats at low densities, 
particularly individual rats.

Several studies have compared the efficacy of 
different surveillance techniques in detecting rats 
at low densities. Studies have found that baited 
motion-sensored cameras are more effective than 
baited tracking tunnels (Anton et al. 2018) and A24 
kill traps (Gronwald and Russell 2021) but less 
effective than baited chew cards (Nottingham et al. 
2021). However, the better detection rates for chew 
cards were likely due to using a more attractive 
lure (peanut butter) and a more appropriate spacing 
(50  m) than for cameras (with lures of quail eggs 
and crickets and spaced at 100 m) as another study 
found baited cameras detected rats at low densities 
more effectively than baited chew cards (Nichols 
et al. 2021). Using quail eggs and crickets as lures 
would likely be problematic in ecologically sensi-
tive sites for biosecurity reasons. Cameras were 

also more effective at detecting rats than track-
ing tunnels, chew cards or live traps in forests and 
shrublands on a large (16 782  ha) island off New 
Zealand (Yiu et al. 2022). Cameras were also more 
successful at detecting rats than tracking tunnels or 
chew cards on small islands (≤ 22.1 ha) in the West 
Indies (Smart et  al. 2021), although the differing 
surveillance devices were not employed contempo-
raneously, precluding direct comparisons. Together, 
these studies indicate that cameras are an effective 
technique for detecting rats at low densities, how-
ever further quantitative studies are needed. Live 
trapping and baited wax tags were equally suc-
cessful at detecting rats at a mainland site in New 
Zealand, and they both were able to detect rats at 
low densities (Gillies and Brady 2018), although 
the study did not investigate detectability at densi-
ties analogous to a rat incursion. Similarly, baited 
wax tags had the highest detection rates for Brown 
Rats at another mainland site in New Zealand, but 
the differences between a wide variety of tech-
niques were not significant (Pickerell et  al. 2014). 
Baited chew-track cards, that detected rats by both 
recording footprints and bite marks, showed “weak 
evidence” of detecting more rats at low densities 
than baited tracking tunnels on mainland New Zea-
land (Sweetapple and Nugent 2011) although, this 
study did not explore detections at densities analo-
gous to an individual rat. Baited tracking tunnels 
were found to be more effective than baited kill 
traps at detecting rats at low densities on mainland 
New Zealand because tracking tunnels continued to 
detect rats when no more were being killed in traps 
(Christie et al. 2015). Surveying for chew marks on 
seed coatings was a new technique for detecting rats 
that was trialled in comparison to kill traps, track-
ing tunnels and detection dogs. However, chewed 
seed coatings were found to be less effective than 
the other three techniques at detecting rats on 14 
islands and a mainland site in New Zealand (Wilms-
hurst and Carpenter 2020). Baited chew cards were 
used to successfully detect remaining rats after ini-
tial eradication efforts on a small (125 ha) temper-
ate island off Australia, which then lead to the suc-
cessful eradication of the remaining rats (Robinson 
and Dick 2020), although this approach was not 
compared to other techniques.

Jarrad et al. (2011) used expert elicitation to esti-
mate the probability of detecting rats with 11 different 
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surveillance techniques in parts of a large (23,400 ha) 
tropical island off Australia and the expert consen-
sus was that the three most effective techniques for 
detecting individual rats were structured surveys by 
biologists (detection probability [σ] = 0.9), baited 
remotely-activated cameras and Scentinel® traps 
(both σ = 0.8). Baited chew cards and baited tracking 
tunnels were estimated to have a moderate probability 
of detecting rats (σ = 0.5) whereas other techniques 
(baited hair traps, unstructured surveys by biologists, 
engaged workers, passive workers, unbaited tracking 
tunnels and baited cage traps) were considered to have 
a low probability of detecting rats (σ ≤ 0.2). However, 
these were estimates only and have not generally been 
supported by subsequent field studies, which have 
shown that baited chew cards were more effective at 
detecting rats than baited motion-sensored cameras 
(Nottingham et al. 2021) and baited tracking tunnels 
(Sweetapple and Nugent 2011). Unfortunately, we 
could find no evidence that Scentinel® traps, essen-
tially tracking tunnels that dispense bait and have a 
camera and weighbridge within them (King et  al. 
2007), had been used as surveillance devices but Jar-
rad et al. (2011) indicate that they may have value in 
detecting rats at low densities.

Improving detectability

While the surveillance device has a fundamental 
effect on the probability of detecting rats at low den-
sities, there are also methods than can improve the 
detectability of rats on any given device. The most 
obvious method is to bait the surveillance device 
and it has been shown that baiting tracking tunnels 
and motion-sensored cameras increased detectabil-
ity by 363% compared to unbaited tunnels and cam-
eras at a mainland site in New Zealand (Anton et al. 
2018). Hence, surveillance devices are invariably 
baited, with the type of bait used usually depend-
ent on the frequency with which devices are moni-
tored. For locations that are monitored infrequently, 
usually remote or uninhabited islands, an effective 
bait to detect rats in exposed situations on a small 
(207 ha) tropical island in the West Indies was found 
to be Klerat® wax blocks that contain brodifacoum 
and chocolate polyurethane blocks (Bell and Daltry 
2014).

Another aspect of improved detectability of rats 
is an improved knowledge of habitats used by rats 

with eradication techniques providing some insights 
into how rats might be effectively detected in those 
habitats. Studies have recently shown that rats occur 
commonly in mangroves on tropical islands (Harper 
et  al. 2015; Russell et  al. 2011) and remotely-acti-
vated cameras have been used to monitor wax bait 
“bolas” installed in the canopy of mangroves (Ringler 
et al. 2021). Similarly, studies in impenetrable inter-
tidal thickets also attached wax bait “bolas”, in addi-
tion to elevated poison bait stations, to the canopy 
of Pemphis shrubs on a  moderately sized (710  ha) 
tropical island (Siers et  al. 2018). This innovative 
study also installed floating poison bait stations in 
intertidal areas lacking vegetation with all bait types 
monitored by visual inspection. Overall, these stud-
ies indicate that surveillance of rats in mangroves 
and other intertidal areas is potentially feasible with 
motion-sensored cameras or baited wax tags and that 
bait stations could also be installed as part of any sur-
veillance program.

One review explored whether pheromones could 
be used to attract rats to baits and kill traps. It found 
that pheromones did appear to act as an attractant, but 
were less effective than bait in attracting rats (Clap-
perton et  al. 2017). However, applying the scent of 
a dominant apex predator elicited curiosity in rats 
and increased detections when used (Garvey et  al. 
2017). These studies suggest that pheromones, either 
of rats or apex predators, could potentially be used 
to increase rat detection in locations where the use 
of long-lasting baits were unfeasible. However, the 
utilisation of pheromones as a lure could potentially 
decrease the efficacy of detection dogs as a surveil-
lance method, although no study has yet investi-
gated this issue. Another innovative laboratory study 
explored whether adding fluorescent dyes to bait 
could help increase the detectability of rats. It found 
that the dyes were incorporated into rat faeces and 
this made the faeces fluorescent and highly visible 
(Frankova et  al. 2015), indicating that this method 
could increase the ability of detecting individuals rats 
by locating rat faeces. Live rats and rat urine were 
also found to attract rats and increase their detecta-
bility on mainland New Zealand, although the study 
did not evaluate whether this led to greater detect-
ability than using baits (Gsell et al. 2014). However, 
an earlier study on mainland New Zealand found 
that the use of live rats as lures did increase trapping 
rates, and that the increase was greater than with bait, 
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although the total number of animals trapped did not 
differ significantly between bait and live rat lures 
(Shapira et al. 2013).

Other studies have focused not on the surveillance 
method but on the spatial location of surveillance 
devices. Studies of experimentally released rats that 
mimicked invading individuals on island and main-
land New Zealand showed that they rapidly increase 
their movements and home range after a few days 
(Innes et al. 2011; Russell et al. 2010). These results 
suggest that surveillance devices should be placed 
within 100  m of potential incursion sites for early 
detection, but also widely across the area of concern 
to detect individuals as they start to wander widely 
after a few days. Models of detectability have been 
shown to be positively related to rainfall in both the 
Marianas Islands and New Zealand (Adams et  al. 
2011; Christie et al 2015), suggesting that after heavy 
rain events may be an appropriate time to check sur-
veillance devices.

A recent study modelled the optimal device spac-
ing for detecting and, consequently, confirming rat 
eradication (Mackenzie et  al. 2022). Rats in urban 
New Zealand were radio-tagged to estimate the prob-
ability of a rat encountering a device (non-toxic bait 
stations, chew cards and wax tags) and then interact-
ing with it. This information was then used to model 
the optimal device spacing to maximise rat detection. 
It found that the mean nightly probability of an indi-
vidual encountering a device was 0.38, whereas the 
probability of interacting with the encountered device 
was 0.34. Modelling showed that a surveillance net-
work of 3.25 chew chards  ha−1 or 3.75 wax tags  ha−1 
deployed for 14 nights would be required to confi-
dently confirm the absence of rats. The density could 
be halved if the surveillance network was deployed 
for 28 nights. However, the authors emphasised that 
this study only explored detection probabilities in 
urban habitats and, hence, different spacing may be 
required in different habitats where detection proba-
bilities were higher or lower than in their study (Mac-
kenzie et  al. 2022). The approach used in this study 
could be used to model detection probabilities and 
device densities for a range of devices, rat species and 
habitats and could be an important tool in developing 
effective surveillance networks.

Surveillance theory

There have also been significant recent improve-
ments in surveillance theory, which has led to mod-
els that help identify the best allocation of biosecu-
rity resources between quarantine, surveillance and 
response (Moore et al. 2010; Rout et al. 2014, 2011). 
These have all used preventing incursions on Barrow 
Island off Western Australia as the model system, but 
have identified the variables that need to be consid-
ered when developing a surveillance program and can 
be applied to surveillance programs anywhere glob-
ally. More recent iterations of these models are able 
to account for the uneven probability of incursions 
across the area of interest and suggest surveillance 
strategies that maximise detections (Berec et al. 2015) 
and how these strategies might be modified through 
time as more information becomes available (Rout 
et  al. 2017). Rapid Eradication Assessment (REA) 
is another recent tools that was originally designed 
to estimate the probability of successful eradications 
on tropical Mexican islands (Russell et  al. 2017a; 
Samaniego-Herrera et al. 2013) but, given that it can 
account for differing detection probabilities both spa-
tially and between surveillance devices, the tool has 
great potential to inform surveillance programs else-
where (Kim et al. 2020). Overall, these recent models 
have the potential to significantly improve the effi-
cacy of surveillance programs and, with incremental 
improvements, this potential is likely to increase in 
the future.

Non-target fauna

One major issue for surveillance programs aiming to 
detect rats at low densities can be interference with 
surveillance devices by other fauna. While this is 
undesirable for poison bait stations because it can 
potentially lead to rodenticide leaching into eco-
systems and secondarily poisoning other fauna, it is 
primarily undesirable from a surveillance viewpoint 
if fauna consume poison or trigger lethal traps, leav-
ing the devices unable to detect or kill rats. Interfer-
ence from other fauna appears to be particularly acute 
on tropical islands. While land crabs have long been 
recognised as being attracted to rat bait stations (e.g. 
Cuthbert et al. 2012; Griffiths et al. 2011; Pott et al. 
2015), other studies have found that a wide range of 
lizard and invertebrates, as well as crabs, can also 
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interfere with surveillance devices (Bell and Dal-
try 2014). Unfortunately, methods to design surveil-
lance devices impervious to interference from crabs 
and other fauna have not been the focus of study, 
though some designs exist (Rauzon 2007). Resolution 
of interference issues often involves moving surveil-
lance devices (Bell and Daltry 2014). Interference 
can also be an issue on temperate islands and some 
studies in New Zealand have found that tracking tun-
nels can rapidly become saturated by non-target spe-
cies, precluding their ability to subsequently detect 
rats (Russell et al. 2009; Yiu et al. 2022).

One study found that applying a vertical PVC tube 
to non-toxic bait stations reduces access to bait sta-
tions by a native rat (Zewe et  al. 2014) on the  tem-
perate mainland and islands off Australia, which has 
implications for the design of surveillance devices 
in the presence of native rats. One species that is 
especially problematic for rat detection is the house 
mouse (Mus musculus). Given their similarity to rats, 
most current surveillance devices for rats are suscep-
tible to interference from mice (e.g. Burge et al. 2017; 
Sweetapple and Nugent 2011). However, mice in the 
absence of rats can have devastating effects on island 
ecosystems (Carter et  al. 2023; Angel et  al. 2009; 
Simberloff 2009) and mouse populations have been 
shown to increase after the removal of rats (Harper 
and Cabrera 2010; Ruscoe et  al. 2011). Hence, it is 
likely that future eradications on islands where both 
rats and mice are present will target both groups (Bell 
and Daltry 2014). However, if mice are still present 
after rat eradication, some studies have focused on 
designing surveillance devices that can detect, and 
potentially kill, rats in the presence of mice, using 
rat-specific poisons such as norbormide (Roskowski 
1965). Further work has focused on improving the 
palatability of baits containing norbormide to increase 
uptake, with implications for detecting rats at low 
densities (Campbell et al. 2015). Work is ongoing on 
developing self-resetting devices called Spitfire traps 
that squirt a lethal dose of poison onto the fur of a rat, 
with the rat ingesting the poison during grooming, 
with the device only triggered when a rat is detected 
(Blackie et  al. 2014). A24 traps are also tailored to 
target primarily rats (https:// goodn ature. co. nz/ colle 
ctions/ a24- rat- stoat- trap- kits) and can be effective in 
the presence of mice, though without modifications 
such as an excluder device they have the potential 
to kill or maim non-target wildlife (Crampton et  al. 

2022; Kreuser et  al. 2022). Lastly, motion-sensored 
cameras are a detection method that have reliably 
detected rats in the presence of other fauna on main-
land New Zealand and a large (10,100 ha) temperate 
island off Australia (Anton et al. 2018; Rendall et al. 
2014).

Although there has been considerable recent work 
into methods to reduce interference from other fauna, 
this research has focused almost exclusively on reduc-
ing interference at bait stations rather than surveil-
lance devices. From this research we can conclude 
that A24 traps and cameras are surveillance devices 
that can reliably detect rats in the presence of other 
fauna and rat-specific poisons could be used in sur-
veillance devices in the future, potentially includ-
ing Spitfire traps. However, it would be desirable for 
future research to focus specifically on the issues that 
influence the efficacy of surveillance devices for rats 
in the presence of interference from other fauna, as 
this remains a neglected issue.

Inhabited islands

The challenges of eradicating rats from inhabited 
islands are well documented (Glen et al. 2013; Oppel 
et al. 2011). While the focus of challenges on inhab-
ited islands has been on eradication, many of the 
same issues are relevant for surveillance programs 
on inhabited islands as well. However, the successful 
eradication of rats from some inhabited islands shows 
that the challenges of surveillance and biosecurity 
on inhabited islands can be overcome. On inhabited 
islands, one of the main issues involves the provision 
of poison around human settlements and farms and 
the potential poisoning of pets or livestock. This has 
often been overcome by using surveillance methods 
that involve non-lethal detection of rats, with poison 
then used, and broadcast by hand, when rats were 
detected. On the Isles of Scilly in the United King-
dom, surveillance methods involved motion-sensored 
cameras, tracking tunnels and non-lethal materials 
attractive to rats that would clearly show teeth marks 
(e.g., chocolate, peanut, or coconut flavoured wax, 
candles and soap). These monitoring stations were 
checked monthly and only when signs of rats were 
detected was poison placed around the station to kill 
the rat (Bell et al. 2019a). Similarly, non-lethal baited 
traps and wax-tags were used to detect re-invading 
rats in sub-Antarctic South Georgia, with poison 

https://goodnature.co.nz/collections/a24-rat-stoat-trap-kits
https://goodnature.co.nz/collections/a24-rat-stoat-trap-kits
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only used if rats were detected (Martin and Richard-
son 2019; Richardson and Croxall 2019). The recent 
development of re-setting traps that are lethal but do 
not contain poison, such as A24 traps, or the use of 
detection dogs, should further improve the ability to 
detect re-invading rats on inhabited islands. Further-
more, surveillance and detection of rats at low den-
sities can be improved by the permanent presence of 
people that can check surveillance devices frequently 
and replace baits, or stations in the case of interfer-
ence or depletion from other fauna, as well as detect 
direct or indirect signs of rats. However, numerous 
other factors, such as regulations, legislation, poli-
cies, agreements with landholders and social atti-
tudes towards different surveillance methods all 
need to be addressed before the deployment of sur-
veillance devices (Oppel et  al. 2011; Pearson et  al. 
2019). Clearly, effective surveillance and detection of 
re-invading rats on inhabited islands will involve the 
cooperation and participation of local people, which 
can be challenging to secure, although methods to 
achieve this collaboration are continually improving 
(Capizzi 2020; Glen et  al. 2013; Oppel et  al. 2011; 
Pearson et al. 2019).

Rat species

Little attention has been paid to how the different 
ecology of the three species of invasive rat might 
influence their detectability by different surveil-
lance devices and whether surveillance programs 

might need to be modified for different invasive 
rat species. There is, however, some evidence that 
A24 traps are less effective at detecting Pacific 
Rats than Black Rats (Shiels et al. 2022), although 
whether other surveillance devices differ in their 
ability to detect rats at low densities in unknown. 
Furthermore, rat behaviour is known to influence 
the efficacy of control devices (Clapperton 2006), 
but this issue has not been well-investigated in rela-
tion to surveillance devices. It is apparent that the 
three invasive species of rats typically prefer dif-
ferent habitats (Bramley 2014; Harper et al. 2005), 
consume different foods (Grant-Hoffman and Bar-
boza 2010) and have different levels of arboreality 
(Foster et  al. 2011; Key and Woods 1996). Brown 
Rats are also known to be more neophobic than 
the other species (Clapperton 2006). Re-invading 
individuals range more widely than resident rats 
and may display unusual behaviour, so these dif-
ferences between species may be less relevant for 
surveillance programs. Exploring whether differ-
ent surveillance programs work most effectively for 
particular rat species is a potentially important area 
for future research.

Surveillance programs

Most surveillance programs to date on islands 
post-eradication have used a variety of surveil-
lance techniques to maximise rat detections, often 
placed together in rat motels (Table  1). Published 

Fig. 2  The number of 
surveillance programs using 
each of the ten surveillance 
devices identified in the 
21 surveillance programs 
for which information was 
available
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surveillance programs used between one and six sur-
veillance devices, with the average number of devices 
used being 2.24. Bait stations were the most common 
surveillance device with snap traps, tracking tun-
nels and chew sticks and cards also commonly used 
(Fig. 2). Given their efficacy in detecting rats at low 
densities, it is surprising that motion-sensored cam-
eras have not been used more widely (Fig. 2). Quite 
possibly their up-front cost, the need to re-battery 
them regularly, and the labour in processing images, 
has precluded their widespread uptake, although their 
previously unquantified efficacy compared with exist-
ing devices may also be a factor. Despite their effi-
cacy in detecting rats (Glen et  al. 2018; Gsell et  al. 
2010), trained dogs also do not appear to have been 
widely used in surveillance programs, at least outside 
New Zealand (Kim et al. 2020). The skills required to 
train dogs, the cost of training and maintaining dogs 
(Bassett et al. 2016) and the preference for detection 
dogs to have the same human handler to maintain 
efficiency (Jamieson et  al. 2018) are presumably a 
significant barrier to their widespread adoption as a 
surveillance tool, particularly in developing countries. 
While we acknowledge that the studies in Table  1 
likely represent only a small proportion of surveil-
lance programs, with many surveillance programs 
not publishing their results or publishing them in the 
grey literature (see Bassett et  al. 2016), we believe 
they provide a useful overview of key methods and 
developments.

An innovative new approach to keep mainland 
New Zealand landscapes free of rats uses the remove 
and protect model, which entails complete removal 
of predators from an area and then protection against 
reinvasion. Preventing reinvasion of sites where pred-
ator-proof fences cannot be installed in a way that 
is cost-effective and feasible at large scales involves 
the use of surveillance devices at low densities of 
which the aim is not to detect individuals, as on rat-
free islands, but prevent a population from being 
established. This model aims to be able to detect at 
least one of the first generation (estimated to be ~ 11 
individuals) within a 100 day window, which is con-
sidered the length of time required for rats to give 
birth to a second generation (Bell et al. 2019b). This 
approach, based on recent trials, would involve sur-
veillance devices at a density of only one per 20 ha 
and trials are being run on devices that are automated 
to provide near real-time updates on the triggering of 

traps using long range radio technology, as this can 
transmit reliably over large distances in rugged or 
forested terrain (Jones et al. 2015). Detection of rats 
surviving for a 7-week period post-baiting in a main-
land area of New Zealand was achieved with a grid 
of motion-sensored cameras at a density of one per 
35 ha and this proved sufficient to detect rats occur-
ring at low densities post-baiting (Nichols et  al. 
2021).

There has also been the development of modelling 
and planning approaches that enable empirical deci-
sions to be made about the allocation of resources to 
surveillance and the design of surveillance programs. 
Modelling allocation of resources between quarantine 
and surveillance using a Markov decision process 
found that preventing rats becoming established on 
Barrow Island, Australia was optimised by investing 
in surveillance at specific locations rather than quar-
antine (Moore et al. 2010). Similarly, modelling allo-
cation of resources between quarantine, surveillance 
and response using a partially observable Markov 
decision process in the same system found that rat 
establishment was best prevented with a combina-
tion of surveillance and response (Rout et al. 2014), 
although the investment in surveillance increased 
as the impact of a localised incursion increased. 
Given that even a single rat can do significant dam-
age to biodiversity (see e.g. Dowding and O’Connor 
2013), these two models emphasise the importance 
of an effective surveillance program in preventing the 
establishment of rat populations. Further models have 
been developed that enable a surveillance program to 
be designed where the spatial location and density of 
surveillance devices can ensure the absence of rats 
is real to a pre-specified level of confidence. These 
models have been used to design rat surveillance pro-
gram for Great Mercury Island, New Zealand (Kim 
et  al. 2020) and Barrow Island, Australia (Jarrad 
et al. 2011), although they do not appear to have been 
widely incorporated into the design of surveillance 
programs elsewhere.

Limitations of generalisations

Although the detection of rats at low densities and 
its relevance to surveillance programs is a grow-
ing field and has been subject to considerable recent 
study, there are still some issues that limit the gen-
eralisation of these studies more broadly. The first is 
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the preponderance of studies from New Zealand and 
the lack of studies from other regions. New Zealand 
has many unique features, such as the lack of native 
non-volant mammals and largely endemic bird fauna 
that cautions against extrapolating conclusions about 
rat detectability and surveillance from New Zealand 
to other parts of the globe, particularly as interference 
from other fauna is likely to differ from New Zea-
land. Similarly, there are a preponderance of studies 
on Black Rats and a noticeable paucity of studies on 
Pacific Rats. Given the difference in ecology between 
the three invasive rats species, conclusions about rat 
detectability and surveillance based on Black Rats 
may not apply to Pacific Rats or the more terrestrial 
Brown Rats.

Another issue that makes generalisations about 
detecting rats at low densities difficult, is the lack of 
published studies of long-term, or permanent, sur-
veillance programs as part of a biosecurity plan. The 
reason for this are unclear but likely relate to either: 
(1) no surveillance program was implemented due 
to financial or logistical constraints; (2) islands that 
were targeted for eradication were isolated and so 
quarantine was the biosecurity methods employed, 
not surveillance; or (3) surveillance was implemented 
but the results were not published and made available, 
likely in many cases because no rats were detected. It 
is likely that all three reasons contribute to the lack of 
published studies on surveillance programs, but this 
highlights the importance of publishing the method-
ology and results from such programs. Currently, the 
lack of published studies is hampering our ability to 
identify optimal surveillance methods, the factors that 
influence the success of those methods and how we 
would adapt and modify methods in response to those 
factors.

Future directions

Our ability to detect rats at low densities has evolved 
and improved considerably over the past 15  years 
since the earlier reviews of Dilks and Towns (2002) 
and Russell et  al. (2008a). This has occurred both 
through increasing detectability by existing technol-
ogies, such as tracking tunnels, and the adoption of 
new technologies, such as motion-sensored cameras. 
Likewise, the efficiency of surveillance programs 
with almost certainly improve in the future, both by 
improving the efficiency of existing surveillance 

devices and incorporating new ones. Improving the 
efficiency of surveillance programs could be achieved 
either through improving detectability in individual 
surveillance devices, or by improving cost-efficien-
cies so that more devices can be deployed or with 
lower maintenance within a surveillance program. 
Future research could focus on methods of improv-
ing detectability, such as increasing the attractive-
ness of devices, the use of baits and/or lures (such as 
pheromones), or improving device design to reduce 
avoidance by rats, which would increase the ability 
of devices to detect rats at low densities. The use of 
drones with multi-spectral and/or infra-red cameras 
flown along pre-programmed night flights are one 
area that may improve our future ability to detect rats 
(Campbell et al. 2015), as is the use of environmental 
DNA (Browett et al. 2020), which is now coming into 
widespread use. Although the efficacy of environ-
mental DNA as a surveillance tool for detecting rats 
at low density has not been investigated, it has been 
shown to be more effective at detecting the presence 
of small mammals then motion-sensored cameras 
(Leempoel et al. 2020; Lyet et al. 2021), themselves 
an effective method of detecting rat at low density, 
which suggests it could potentially be a very effec-
tive surveillance method. Additionally, Spitfire traps 
have been recently prototyped in New Zealand to con-
trol invasive mammals (Blackie et al. 2016; Murphy 
et al. 2018). While they have not been trialled on rats, 
they also have the potential to increase detectability 
and decrease reinvasion probability. The development 
of rat-specific toxins is also an important area for 
future research as it would greatly improve our abil-
ity to eradicate rats and develop effective surveillance 
programs that minimise the risk of rat reinvasion on 
inhabited islands (Campbell et al. 2015).

Future improvements in the cost efficiency of 
devices are an equally important area for future 
research. The development of automated devices that 
are able provide real-time information on the pres-
ence of rats using, for example, long-range radio tech-
nology would reduce costs by precluding the need to 
undertake regular checks of devices (Bell et al. 2019b; 
Jones et al. 2015). This automated technology could 
be developed to send a remote signal when a device, 
such as a A24 or snap trap, is triggered or it could 
enable images from motion-sensored cameras to be 
downloaded and reviewed remotely. Artificial intelli-
gence is also becoming an increasingly important tool 
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in processing the large volume of pictures generated 
and will have an important role in rapid identification 
of rats on camera images (e.g. Tabak et al. 2020).

Another potential area for future research should 
aim to quantify rat detectability for a range of sur-
veillance devices and the factors that influence that 
detectability. Detectability for any given device is 
likely to vary depending on the rat species, habitat, 
season and other animals present, among a range of 
factors (e.g. Adams et  al. 2011; Burge et  al. 2017; 
Yiu et al. 2022). Recent modelling innovations have 
enabled the density and spatial distribution of surveil-
lance devices required to detect a rat to pre-specified 
confidence level to be determined (Jarrad et al. 2011; 
Kim et  al. 2020) if the detectability with a given 
device is known. These innovations have not been 
widely used and adopted in designing surveillance 
programs, yet quantifying variations in detectability 
would enable these tools to optimise the range and 
spatial locations of devices used in surveillance pro-
grams in the future. Overall, improved cost efficiency 
will help in the uptake and maintenance of efficient 
surveillance programs, particularly in developing 
countries that often lack strong government logistical 
and financial support. This will be critical to future 
conservation efforts because developing countries are 
typically where the maintenance of rat-free areas or 
suppression of rat populations will give the greatest 
conservation benefits (Holmes et al. 2019; Jones et al. 
2016).

Conclusions

Given that even a single rat can do significant dam-
age to biodiversity (Dowding and O’Connor 2013), 
effective surveillance programs need to maximise 
their probability of detecting rats at low densities, 
preferably even  a single rat. Although detecting rats 
at low density, let alone a single rat, is extremely 
challenging, advances over the past 15  years, since 
the last review of surveillance techniques (Russell 
et al. 2008b), have significantly improved our ability 
to detect rats. Motion-sensored cameras and rodent 
detection dogs are two techniques developed recently 
that have greatly improved our ability to detect rats 
at low density (e.g. Gsell et  al. 2010; Rendall et  al. 
2014), with cameras consistently showing an ability 
to detect rats at lower densities than other techniques. 

Rodent detection dogs are also able to reliably detect 
even individual rats although there are challenges to 
their widespread adoption, particularly in develop-
ing countries, due to the cost and skills required for 
their training and maintenance (Bassett et  al. 2016). 
However, it needs to be acknowledged that both 
these techniques only detect rats, rather than elimi-
nate them, and so these detection methods need to be 
combined with control methods to maintain the sup-
pression or eradication of rats. Furthermore, no one 
technique is optimal, and a combination of techniques 
is more likely to detect rats at low densities than any 
single technique. Our ability to detect rats at low den-
sities using existing techniques has further improved 
due to a better understanding of optimal baits and 
techniques to place surveillance devices in challeng-
ing habitats, such as mangroves and intertidal thick-
ets (Ringler et al. 2021; Siers et al. 2018). Lastly, the 
development of models that can identify not only 
the optimal allocation to quarantine, surveillance 
and response but also the optimal choice and spatial 
location of surveillance devices has further improved 
our ability to detect rats at low densities (Berec et al. 
2015; Kim et al. 2020; Moore et al. 2010).

However, there is still much that needs to be done 
to better understand how to detect rats at low density. 
How we vary surveillance programs to detect differ-
ent rat species, between different island types (e.g., 
tropical vs. temperate, inhabited vs uninhabited) or 
in the presence of different types of interfering fauna 
(e.g. crabs vs mice) remains to be better elucidated. 
Future surveillance programs are likely to incorpo-
rate both improvements to current methods and new 
methods and devices that will be developed in the 
future. Spitfire and A24 traps that kill rats multiple 
times before needing reloading, drones with multi-
spectral and/or infra-red cameras, rat specific poisons 
and long-range radio technology that provide real-
time information on rat detections are all ideas that 
are currently in development for deployment in sur-
veillance programs (Campbell et al. 2015; Gronwald 
and Russell 2021; Jones et al. 2015).

There have been numerous improvements over 
the past 15 years in our ability with to detect rats at 
low densities and several emerging technologies that 
should lead to improvements in the future. Currently, 
a combination of motion-sensored cameras, rodent 
detection dogs and bait stations appear to provide 
the best opportunities to detect rats at low densities, 
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particularly if employed with models that identify the 
optimal location and density of surveillance devices. 
However, drones with multi-spectral and/or infra-red 
cameras and eDNA both show considerable prom-
ise at detecting rats at low densities, even individual 
rats post-eradication, and it is likely these techniques 
will be more widely incorporated into surveillance 
programs in the future. Given the significant nega-
tive effects on invasive rats on a wide range of spe-
cies, the future of many species depends on our abil-
ity to develop effective surveillance programs that 
can detect rats at low density. This will maximise our 
ability to ensure important areas for biodiversity con-
tinue to suppress rats at low densities or remain rat-
free and protect the (often considerable) investment 
involved in rat suppression and eradication.
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