7,085 research outputs found

    Sensors measure surface ablation rate of reentry vehicle heat shield

    Get PDF
    Sensors measure surface erosion rate of ablating material in reentry vehicle heat shield. Each sensor, which is placed at precise depths in the heat shield is activated when the ablator surface erodes to the location of a sensing point. Sensor depth and activation time determine ablator surface erosion rate

    Mining developer communication data streams

    Full text link
    This paper explores the concepts of modelling a software development project as a process that results in the creation of a continuous stream of data. In terms of the Jazz repository used in this research, one aspect of that stream of data would be developer communication. Such data can be used to create an evolving social network characterized by a range of metrics. This paper presents the application of data stream mining techniques to identify the most useful metrics for predicting build outcomes. Results are presented from applying the Hoeffding Tree classification method used in conjunction with the Adaptive Sliding Window (ADWIN) method for detecting concept drift. The results indicate that only a small number of the available metrics considered have any significance for predicting the outcome of a build

    Velocity fluctuations and hydrodynamic diffusion in sedimentation

    Get PDF
    We study non-equilibrium velocity fluctuations in a model for the sedimentation of non-Brownian particles experiencing long-range hydrodynamic interactions. The complex behavior of these fluctuations, the outcome of the collective dynamics of the particles, exhibits many of the features observed in sedimentation experiments. In addition, our model predicts a final relaxation to an anisotropic (hydrodynamic) diffusive state that could be observed in experiments performed over longer time ranges.Comment: 7 pages, 5 EPS figures, EPL styl

    Instabilities in Zakharov Equations for Laser Propagation in a Plasma

    Full text link
    F.Linares, G.Ponce, J-C.Saut have proved that a non-fully dispersive Zakharov system arising in the study of Laser-plasma interaction, is locally well posed in the whole space, for fields vanishing at infinity. Here we show that in the periodic case, seen as a model for fields non-vanishing at infinity, the system develops strong instabilities of Hadamard's type, implying that the Cauchy problem is strongly ill-posed

    Electric-field-induced displacement of a charged spherical colloid embedded in an elastic Brinkman medium

    Full text link
    When an electric field is applied to an electrolyte-saturated polymer gel embedded with charged colloidal particles, the force that must be exerted by the hydrogel on each particle reflects a delicate balance of electrical, hydrodynamic and elastic stresses. This paper examines the displacement of a single charged spherical inclusion embedded in an uncharged hydrogel. We present numerically exact solutions of coupled electrokinetic transport and elastic-deformation equations, where the gel is treated as an incompressible, elastic Brinkman medium. This model problem demonstrates how the displacement depends on the particle size and charge, the electrolyte ionic strength, and Young's modulus of the polymer skeleton. The numerics are verified, in part, with an analytical (boundary-layer) theory valid when the Debye length is much smaller than the particle radius. Further, we identify a close connection between the displacement when a colloid is immobilized in a gel and its velocity when dispersed in a Newtonian electrolyte. Finally, we describe an experiment where nanometer-scale displacements might be accurately measured using back-focal-plane interferometry. The purpose of such an experiment is to probe physicochemical and rheological characteristics of hydrogel composites, possibly during gelation

    Criminal Law Reform and the Law Reviews

    Full text link

    Contrasting abundance and residency patterns of two sympatric populations of transient killer whales (Orcinus orca) in the northern Gulf of Alaska

    Get PDF
    Two sympatric populations of “transient” (mammal-eating) killer whales were photo-identified over 27 years (1984–2010) in Prince William Sound and Kenai Fjords, coastal waters of the northern Gulf of Alaska (GOA). A total of 88 individuals were identified during 203 encounters with “AT1” transients (22 individuals) and 91 encounters with “GOA” transients (66 individuals). The median number of individuals identified annually was similar for both populations (AT1=7; GOA=8), but mark-recapture estimates showed the AT1 whales to have much higher fidelity to the study area, whereas the GOA whales had a higher exchange of individuals. Apparent survival estimates were generally high for both populations, but there was a significant reduction in the survival of AT1 transients after the Exxon Valdez oil spill in 1989, with an abrupt decline in estimated abundance from a high of 22 in 1989 to a low of seven whales at the end of 2010. There was no detectable decline in GOA population abundance or survival over the same period, but abundance ranged from just 6 to 18 whales annually. Resighting data from adjacent coastal waters and movement tracks from satellite tags further indicated that the GOA whales are part of a larger population with a more extensive range, whereas AT1 whales are resident to the study area

    Self-assembly of the simple cubic lattice with an isotropic potential

    Full text link
    Conventional wisdom presumes that low-coordinated crystal ground states require directional interactions. Using our recently introduced optimization procedure to achieve self-assembly of targeted structures (Phys. Rev. Lett. 95, 228301 (2005), Phys. Rev. E 73, 011406 (2006)), we present an isotropic pair potential V(r)V(r) for a three-dimensional many-particle system whose classical ground state is the low-coordinated simple cubic (SC) lattice. This result is part of an ongoing pursuit by the authors to develop analytical and computational tools to solve statistical-mechanical inverse problems for the purpose of achieving targeted self-assembly. The purpose of these methods is to design interparticle interactions that cause self-assembly of technologically important target structures for applications in photonics, catalysis, separation, sensors and electronics. We also show that standard approximate integral-equation theories of the liquid state that utilize pair correlation function information cannot be used in the reverse mode to predict the correct simple cubic potential. We report in passing optimized isotropic potentials that yield the body-centered cubic and simple hexagonal lattices, which provide other examples of non-close-packed structures that can be assembled using isotropic pair interactions.Comment: 16 pages, 12 figures. Accepted for publication in Physical Review
    corecore