14 research outputs found

    Neural activity tracking identity and confidence in social information

    Get PDF
    Humans learn about the environment either directly by interacting with it or indirectly by seeking information about it from social sources such as conspecifics. The degree of confidence in the information obtained through either route should determine the impact that it has on adapting and changing behaviour. We examined whether and how behavioural and neural computations differ during non-social learning as opposed to learning from social sources. Trial-wise confidence judgements about non-social and social information sources offered a window into this learning process. Despite matching exactly the statistical features of social and non-social conditions, confidence judgements were more accurate and less changeable when they were made about social as opposed to non-social information sources. In addition to subjective reports of confidence, differences were also apparent in the Bayesian estimates of participants' subjective beliefs. Univariate activity in dorsomedial prefrontal cortex and posterior temporoparietal junction more closely tracked confidence about social as opposed to non-social information sources. In addition, the multivariate patterns of activity in the same areas encoded identities of social information sources compared to non-social information sources

    Changing connectivity between premotor and motor cortex changes inter-areal communication in the human brain.

    Get PDF
    The ventral premotor cortex (PMv) is an important component of cortico-cortical pathways mediating prefrontal control over primary motor cortex (M1) function. Paired associative stimulation (ccPAS) is known to change PMv influence over M1 in humans, which manifests differently depending on the behavioural context. Here we show that these changes in influence are functionally linked to PMv-M1 phase synchrony changes induced by repeated paired stimulation of the two areas. PMv-to-M1 ccPAS leads to increased phase synchrony in alpha and beta bands, while reversed order M1-to-PMv ccPAS leads to decreased theta phase synchrony. These changes are visible at rest but are predictive of changes in oscillatory power in the same frequencies during movement execution and inhibition, respectively. The results unveil a link between the physiology of the motor network and the resonant frequencies mediating its interactions and provide a putative mechanism underpinning the relationship between synaptic efficacy and brain oscillations

    Hebbian activity-dependent plasticity in white matter

    Get PDF
    Synaptic plasticity is required for learning and follows Hebb’s rule, the computational principle underpinning associative learning. In recent years, a complementary type of brain plasticity has been identified in myelinated axons, which make up the majority of brain’s white matter. Like synaptic plasticity, myelin plasticity is required for learning, but it is unclear whether it is Hebbian or whether it follows different rules. Here, we provide evidence that white matter plasticity operates following Hebb’s rule in humans. Across two experiments, we find that co-stimulating cortical areas to induce Hebbian plasticity leads to relative increases in cortical excitability and associated increases in a myelin marker within the stimulated fiber bundle. We conclude that Hebbian plasticity extends beyond synaptic changes and can be observed in human white matter fibers

    Viewing ambiguous social interactions increases functional connectivity between frontal and temporal nodes of the social brain.

    Get PDF
    Social behaviour is coordinated by a network of brain regions, including those involved in the perception of social stimuli and those involved in complex functions like inferring perceptual and mental states and controlling social interactions. The properties and function of many of these regions in isolation is relatively well-understood, but less is known about how these regions interact whilst processing dynamic social interactions. To investigate whether the functional connectivity between brain regions is modulated by social context, we collected functional MRI (fMRI) data from male monkeys (Macaca mulatta) viewing videos of social interactions labelled as "affiliative", "aggressive", or "ambiguous". We show activation related to the perception of social interactions along both banks of the superior temporal sulcus, parietal cortex, medial and lateral frontal cortex, and the caudate nucleus. Within this network, we show that fronto-temporal functional connectivity is significantly modulated by social context. Crucially, we link the observation of specific behaviours to changes in functional connectivity within our network. Viewing aggressive behaviour was associated with a limited increase in temporo-temporal and a weak increase in cingulate-temporal connectivity. By contrast, viewing interactions where the outcome was uncertain was associated with a pronounced increase in temporo-temporal, and cingulate-temporal functional connectivity. We hypothesise that this widespread network synchronisation occurs when cingulate and temporal areas coordinate their activity when more difficult social inferences are being made.SIGNIFICANCE STATEMENT:Processing social information from our environment requires the activation of several brain regions, which are concentrated within the frontal and temporal lobes. However, little is known about how these areas interact to facilitate the processing of different social interactions. Here we show that functional connectivity within and between the frontal and temporal lobes is modulated by social context. Specifically, we demonstrate that viewing social interactions where the outcome was unclear is associated with increased synchrony within and between the cingulate cortex and temporal cortices. These findings suggest that the coordination between the cingulate and temporal cortices is enhanced when more difficult social inferences are being made

    Identification and disruption of a neural mechanism for accumulating prospective metacognitive information prior to decision-making

    Get PDF
    More than one type of probability must be considered when making decisions. It is as necessary to know one's chance of performing choices correctly as it is to know the chances that desired outcomes will follow choices. We refer to these two choice contingencies as internal and external probability. Neural activity across many frontal and parietal areas reflected internal and external probabilities in a similar manner during decision-making. However, neural recording and manipulation approaches suggest that one area, the anterior lateral prefrontal cortex (alPFC), is highly specialized for making prospective, metacognitive judgments on the basis of internal probability; it is essential for knowing which decisions to tackle, given its assessment of how well they will be performed. Its activity predicted prospective metacognitive judgments, and individual variation in activity predicted individual variation in metacognitive judgments. Its disruption altered metacognitive judgments, leading participants to tackle perceptual decisions they were likely to fail

    Increasing and decreasing interregional brain coupling increases and decreases oscillatory activity in the human brain

    Get PDF
    The origins of oscillatory activity in the brain are currently debated, but common to many hypotheses is the notion that they reflect interactions between brain areas. Here, we examine this possibility by manipulating the strength of coupling between two human brain regions, ventral premotor cortex (PMv) and primary motor cortex (M1), and examine the impact on oscillatory activity in the motor system measurable in the electroencephalogram. We either increased or decreased the strength of coupling while holding the impact on each component area in the pathway constant. This was achieved by stimulating PMv and M1 with paired pulses of transcranial magnetic stimulation using two different patterns, only one of which increases the influence exerted by PMv over M1. While the stimulation protocols differed in their temporal patterning, they were comprised of identical numbers of pulses to M1 and PMv. We measured the impact on activity in alpha, beta, and theta bands during a motor task in which participants either made a preprepared action (Go) or withheld it (No-Go). Augmenting cortical connectivity between PMv and M1, by evoking synchronous pre- and postsynaptic activity in the PMv–M1 pathway, enhanced oscillatory beta and theta rhythms in Go and No-Go trials, respectively. Little change was observed in the alpha rhythm. By contrast, diminishing the influence of PMv over M1 decreased oscillatory beta and theta rhythms in Go and No-Go trials, respectively. This suggests that corticocortical communication frequencies in the PMv–M1 pathway can be manipulated following Hebbian spike-timing–dependent plasticity

    Causal manipulation of self-other-mergence in dorsomedial prefrontal cortex

    Get PDF
    To navigate social environments, people must simultaneously hold representations about their own and others’ abilities. During self-other-mergence, people estimate others’ abilities not only on the basis of the others’ past performances, but in addition the estimates are also influenced by their own performances. For example, if we ourselves perform well, we overestimate the abilities of those we are co-operating with and underestimate competitors. Self-other mergence is associated with specific activity patterns in dorsomedial prefrontal cortex (dmPFC). Using a combination of non-invasive brain stimulation, functional magnetic resonance imaging and computational modelling, we show that dmPFC neurostimulation silences these neural signatures of self-other-mergence in relation to the estimation of others’ abilities. In consequence, self-other-mergence behavior increases and our assessments of our own performance are increasingly projected onto other people. This suggests an inherent tendency to form interdependent social representations and a causal role for dmPFC in separating self and other representations

    Non-invasive associative plasticity induction in a cortico-cortical pathway of the human brain

    No full text
    Associative plasticity, which involves modification of synaptic strength by coactivation of two synaptic inputs, has been demonstrated in many species. Here I explore whether it is possible to induce associative plasticity within a corticocortical pathway in the human brain using a novel protocol that activates two brain areas repeatedly with double-site transcranial magnetic stimulation (TMS). The pathway between ventral premotor cortex (PMv) and primary motor cortex (M1) which computes hand movements for precision grasp was manipulated. First, I selectively potentiated physiological connectivity between the stimulated brain areas. The effects as assessed with paired-pulse TMS were in accordance with principles of spike timing-dependent plasticity (STDP), pathwayspecific and showed a different pattern of expression during rest and during performance of a naturalistic prehension task. Furthermore, I demonstrated that effects evolved rapidly, lasted for up to three hours and were reversible. In a follow-up study, the protocol‘s effects on network interactions were investigated using functional magnetic resonance imaging (fMRI), specifically focussing on functional connectivity of network nodes within the wider parietofrontal circuit controlling reaching-and-grasping. The study demonstrated that functional connectivity was causally modified between stimulated nodes and that those changes in coupling also affected parallel, functionally-related pathways. Comparison of neurophysiological (paired-pulse TMS) and functional (fMRI) connectivity between individuals revealed a linear relationship of these connectivity indices; the first can assess the physiological nature of the interaction, whereas the latter can elucidate global network effects, making the techniques complementary. Neurophysiological interactions of ipsilesional and contralesional PMv-M1 were tested in chronic subcortical stroke patients during grasping. Patients showed a diminished facilitatory influence of ipsilesional PMv on M1 compared to healthy controls which might contribute to their motor disability. Application of paired-associative TMS “normalised“ the reduced effective influence of ipsilesional PMv on M1 and this effect correlated with the patient‘s potential to improve their dexterity.This thesis is not currently available in ORA

    Complementary roles of serotonergic and cholinergic systems in decisions about when to act

    No full text
    Decision-making not only involves deciding about which action to choose but when and whether to initiate an action in the first place. Macaque monkeys tracked number of dots on a screen and could choose when to make a response. The longer the animals waited before responding, the more dots appeared on the screen and the higher the probability of reward. Monkeys waited longer before making a response when a trial's value was less than the environment's average value. Recordings of brain activity with fMRI revealed that activity in dorsal raphe nucleus (DRN)-a key source of serotonin (5-HT)-tracked average value of the environment. By contrast, activity in the basal forebrain (BF)-an important source of acetylcholine (ACh)-was related to decision time to act as a function of immediate and recent past context. Interactions between DRN and BF and the anterior cingulate cortex (ACC), another region with action initiation-related activity, occurred as a function of the decision time to act. Next, we performed two psychopharmacological studies. Manipulating systemic 5-HT by citalopram prolonged the time macaques waited to respond for a given opportunity. This effect was more evident during blocks with long inter-trial intervals (ITIs) where good opportunities were sparse. Manipulating systemic acetylcholine (ACh) by rivastigmine reduced the time macaques waited to respond given the immediate and recent past context, a pattern opposite to the effect observed with 5-HT. These findings suggest complementary roles for serotonin/DRN and acetylcholine/BF in decisions about when to initiate an action

    Consistent patterns of distractor effects during decision making

    No full text
    International audienceThe value of a third potential option or distractor can alter the way in which decisions are made between two other options. Two hypotheses have received empirical support: that a high value distractor improves the accuracy with which decisions between two other options are made and that it impairs accuracy. Recently, however, it has been argued that neither observation is replicable. Inspired by neuroimaging data showing that high value distractors have different impacts on prefrontal and parietal regions, we designed a dual route decision-making model that mimics the neural signals of these regions. Here we show in the dual route model and empirical data that both enhancement and impairment effects are robust phenomena but predominate in different parts of the decision space defined by the options’ and the distractor’s values. However, beyond these constraints, both effects co-exist under similar conditions. Moreover, both effects are robust and observable in six experiments
    corecore