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SUMMARY

To navigate social environments, people must simultaneously hold representations about their own and
others’ abilities. During self-other mergence, people estimate others’ abilities not only on the basis of the
others’ past performance, but the estimates are also influenced by their own performance. For example, if
we perform well, we overestimate the abilities of those with whom we are co-operating and underestimate
competitors. Self-other mergence is associated with specific activity patterns in the dorsomedial prefrontal
cortex (dmPFC). Using a combination of non-invasive brain stimulation, functional magnetic resonance im-
aging, and computational modeling, we show that dmPFC neurostimulation silences these neural signatures
of self-other mergence in relation to estimation of others’ abilities. In consequence, self-other mergence
behavior increases, and our assessments of our own performance are projected increasingly onto other peo-
ple. This suggests an inherent tendency to form interdependent social representations and a causal role of
the dmPFC in separating self and other representations.

INTRODUCTION

Navigating social environments requires us to interact with other

agents that behave similarly to ourselves. Other people’s deci-

sions influence how we decide ourselves (Garvert et al., 2015;

Suzuki et al., 2016), and we keep estimates of our own and other

people’s performance levels and abilities (Boorman et al., 2013;

Wittmann et al., 2016). Ability estimates—impressions of how

well we and others performcertain actions—allow us to construct

shared representations of ourselves and others when we pursue

cooperative goals or compete against each other. As a result,

representations of ourselves change dynamically with social

context (Wittmann et al., 2018). Here we investigate the causal

contribution of the dorsomedial prefrontal cortex (dmPFC) to

maintaining an individualized sense of one’s own and others’ abil-

ities. In particular, we show that estimates of our own abilities are

merged increasingly with estimates of others’ abilities after

causal manipulation of the medial prefrontal cortex.

DmPFC neurons signal others’ trial and error learning in action

reversal tasks (Yoshida et al., 2011, 2012) and encode the rela-

tive fit of one’s own to other’s actions (Seo et al., 2014). In the hu-

man dmPFC, corresponding signals indicate co-occurrence of

ability estimates for oneself and others and the specific ways

inwhich they can becomemerged (Wittmann et al., 2016). During

self-other mergence (SOM), people estimate their ability not just

as a function of their own performance. Instead, they are also

biased by the performance of other people, depending on their

contextual relationship with them (cooperation or competition).

DmPFC activity is directly linked to context-dependent SOM.

This is especially apparent during estimation of other people’s

abilities, but it is also apparent, albeit in less direct ways, during

estimation of self-ability. For these reasons, here we focus on

SOM in relation to estimation of other people’s abilities.

The existence of such signals in the dmPFC and their correla-

tion with SOM can, however, be interpreted in two completely

opposite ways. This is partly a consequence of potential ambigu-

ities in interpretation of correlations between variation in

behavior and variation in neural activity that occur across partic-

ipants (Lebreton et al., 2019). As a consequence, such signals

might be responsible for causing SOM or, conversely, for

ensuring that it does not occur to an even greater degree. These

two interpretations suggest fundamentally different perspectives

regarding the nature of our sense of self and others during social

interaction. According to the first perspective, our default predis-

position, in the absence of dmPFC activity, is an atomic, isolated

sense of each individual, and dmPFC activity gives rise to inter-

actions in self-other representations. According to the second

perspective, our default predisposition is for a contextually
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embedded and integrated sense of self and other, and separa-

tion is only effected by dmPFC activity. Arbitration between

these two accounts can be achieved by determining the causal

effect of dmPFC disruption: does the dmPFC disrupt or augment

SOM? More specifically, in our previous work (Wittmann et al.,

2016), dmPFC activity was directly correlated with the degree

to which participants merged knowledge of their own perfor-

mance (self-performance or S-performance) into estimates of

others’ abilities (O-ability estimates or O-ability) in a context-

dependent manner. According to the first perspective, if the

dmPFC enables SOM to occur, then dmPFC disruption should

decrease SOM behavior and make O-ability estimates more in-

dependent from one’s own performance. Alternatively, accord-

ing to the second perspective, the dmPFC may be critical for

keeping estimates of self and other separate, and higher dmPFC

signals might have reflected an increase in activity aimed at pre-

venting SOM from occurring. In this case, disrupting dmPFC ac-

tivity should increase SOM behavior and make estimates of O-

ability more dependent on S-performance.

Here we use a combination of non-invasive brain stimulation,

neuroimaging, and computational modeling to assess the effects

of causal manipulation of dmPFC activity on SOM in the estima-

tion of other’s abilities. Causal methods in addition to correla-

tional measurements of brain activity, such as those provided

by functional magnetic resonance imaging (fMRI), are indispens-

able for understanding brain function and have recently trans-

formed our understanding of non-social decision-related signals

in other brain networks (Ballesta et al., 2020; Knudsen and

Wallis, 2020). Nonetheless, their use in social neuroscience is

very rare (Hill et al., 2017). Here we show that, related to the esti-

mation of another person, causal manipulation of the dmPFC di-

minishes neural signatures of SOM in the dmPFC and, in turn, in-

creases behavioral SOM effects. This suggests that self and

other ability estimates are inherently interdependent and that

the dmPFC serves to keep them separate to ensure a correctly

calibrated sense of self.

RESULTS

Measurements of appropriate performance estimation
and SOM
We recently developed an experimental paradigm that allows

precise measurement of how people form ability estimates (Witt-

mann et al., 2016). In this situation, people exhibit SOM; their es-

timates of their own ability are influenced by the performance of

others, and, vice versa, their estimates of others’ abilities are

influenced by their own performance.

In the paradigm, participants perform arbitrary ‘‘minigames’’

(short reaction-time-based perceptual tasks) in each trial, and

explicit performance feedback over many trials enables them

to learn about their own abilities and those of two others. Figure 1

shows a simplified timeline of the central features of the task. We

used predetermined performance feedback schedules to care-

fully match performance feedback for self and others and to

Figure 1. Social performance monitoring and SOM

(A) In each trial of the experiment, participants observed performance feedback for self and other relating to their respective performances in the minigame they

had just played (higher yellow bars indicate better performance). Minigames, for example, comprised comparison of two time intervals between cues presented

on the screen (see turquoise dots in the panel). Performance ratingsmade by participants at the start of each trial provided a behavioral readout of S-ability andO-

ability estimation (in the example displayed here, the participant manipulates the yellow tick to predict the other player’s performance). This allowed us to test how

S- and O-ability estimates were based on recent performance feedback for the appropriate player (appropriate ability estimation; a solid arrow illustrates this for

O-ability) and the inappropriate player (self-other mergence [SOM], dotted arrow; in this example, O-ability estimates are based on S-performance). Importantly,

trials had a cooperative or competitive context, which is critical for SOM. Note that the task comprised two other players (STARMethods); only one is shown here

for illustration.

(B) Conceptual and mathematical formalization of SOM in the case of SOMint(S/O) (SOMint(O/S) operates analogously). During SOMint(S/O), the estimation

of O-ability is not just based on O-performance alone but also on S-performance. If S performed well recently, then O’s performance is overestimated during

cooperation but underestimated during competition. Thismeans that the other player is estimated as worse or better in tandemwith the current performance level

of S. Blue and red slopes illustrate these linear relationships. These positive and negative slopes of the line plot are captured via our regression analysis approach

by positive and negative effect sizes (bar graph); the bars summarize the strength and direction of relationships between the observed performances (S- and O-

performance) and the resulting ability ratings (S- and O-ability estimates), allowing statistical testing of SOM as the difference between cooperative and

competitive context. For the latter, we use the interaction of S-performance with social context. In this way, we quantify the absolute influence of S-performance

on S-ability estimates while accounting for the inverted signs of the effects (positive in cooperation, negative in competition).

See also Figures S1–S3.
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keep them stable across participants. This ensured that perfor-

mance learning for self and others was comparable across par-

ticipants and, therefore, that individual differences in task

behavior were interpretable. Subjects were told that the perfor-

mance feedback reflected their objective performance mapped

onto a 15-point performance scale and that the previously estab-

lished mapping was the same for all players. Therefore, partici-

pants received explicit and independent performance feedback

for all players. Using not only one but twominigames per session

in pseudo-random trial order made it possible to have, on the

one hand, slowly drifting performance shifts within a minigame

(because abilities are thought to be relatively stable features)

but, on the other hand, reduced sequential correlations across

trials and ensured a full parametric range of performance feed-

back, making it possible to perform event-related fMRI analysis.

Trial-wise decisions to engage and avoid cooperation/competi-

tion with a specified other player ensured that the social context

was meaningful and that performance levels of all players were

considered carefully by the participants (see STAR Methods

and Figures S1–S3 for details regarding the minigames,

engage/avoid decisions, and the other two players). Critically,

performance ratings at the start of each trial provide a detailed

readout of participants’ estimates of their own ability (self-ability

estimation: S-ability) and another player’s ability (O-ability esti-

mation). In general, participants perform this task correctly by

using what we refer to as appropriate ability estimation—basing

S-ability estimates on S-performance and basing O-ability esti-

mates on O-performance. However, at the same time, ability es-

timates for self and others are intermixed (Figure 1A; Figures S1–

S3). SOM is dependent on the social contexts in which trials

occur, cooperation or competition, which require participants

to entertain different relationships to the other player. During

cooperation, high S-performance leads to overestimation of O-

ability estimates, whereas in competition, high S-performance

decreases estimates of O-ability estimates (Figure 1B). Corre-

sponding SOM effects occur for S-ability estimation. SOM has

been linked to activity in the medial prefrontal cortex. The

strength of SOM effects correlates with fMRI signal strength in

dmPFC area 9, suggesting that the dmPFC coordinates ability

estimates for self and other (Wittmann et al., 2016).

Neurostimulation protocol
Here we used the same experimental paradigm to causally

manipulate SOM by targeting its neural correlates in the dmPFC

with 40-s continuous theta burst stimulation (cTBS) (Huang et al.,

2005; Polanı́a et al., 2018) while recording the effect of this causal

intervention on behavioral measurements of SOM and simulta-

neously acquired neural measurements of SOM. cTBS is an off-

line brain stimulation protocol that decreases cortical excitability

of the targeted region for several minutes after application

(Huang et al., 2005). cTBS has been used not only to modulate

cortical excitability in motor areas but also in brain areas relevant

for social cognition (Hill et al., 2017) and metacognition (Miya-

moto et al., 2021). A group of participants underwent a shortened

version of the experiment in the MRI scanner, preceded by cTBS

(cTBS condition). After a temporal delay to guarantee washout of

cTBS effects, participants underwent a second session without

preceding cTBS (no-cTBS condition; Figure 2A). Session order

was counterbalanced across participants (half of the partici-

pants performed the no-cTBS session first). Manipulating super-

ficial features of the minigames (Figure S3) allowed us to present

the exact same sequence of performance feedback in both ses-

sions. This ensured that any observed SOM differences could

only be attributable to the cTBS intervention. In addition to the

within-participant control implemented by the two-session

design, we used a between-participant control: in parallel, we re-

cruited a same-sized second group of participants who under-

went the same procedure, with the only difference being that

cTBS was applied over the vertex instead of the dmPFC, a

non-active control region where no SOM correlates have been

identified previously (Wittmann et al., 2016; Figure 2B). Overall,

these procedures resulted in 112 sessions of neural and behav-

ioral data and allowed us to control for application of cTBS per se

by testing whether the SOM difference in dmPFC-cTBS and no-

cTBS sessions was bigger or smaller than the difference be-

tween vertex-cTBS and no-cTBS sessions. We applied the anal-

ogous analysis pipeline as previously to the behavioral and neu-

ral data (Wittmann et al., 2016) comprising a combination of

reinforcement learning modeling (to capture S-performance

and O-performance), behavioral regression analysis (to measure

SOM effect sizes), and parametric fMRI analysis (to identify neu-

ral correlates). An important feature of the task design ensured

that SOM is the consequence of the other agent’s performance

and not simply due to variation in payoff received in minigames

(see Experimental task in the STAR Methods).

SOM in the baseline data
There was clear evidence of SOM in our experiment when exam-

ining data from only no-cTBS sessions collapsed over both

groups. As expected, despite small differences in the relative

strengths of effects, S-ability was influenced more positively by

O-performance in cooperation than in competition (SO-

Mint(O/S), where ‘‘int’’ denotes the interaction term; t(55) =

2.162, p = 0.035; Figure 3A). At the same time, O-ability was simi-

larly influencedmore positively by S-performance in cooperation

than competition (SOMint(S/O); t(55) = 3.233, p = 0.002;

Figure 2. Neurostimulation protocol
(A) We collected fMRI data from each participant twice; once after cTBS

stimulation and once in a control session. The order of cTBS and no stimulation

blocks was counterbalanced across participants with a 1-h washout period

between the sessions.

(B) One group (n = 28) received stimulation of the area of interest, dmPFC area

9, whereas a second group (n = 28) received stimulation of a non-active control

region, the vertex. dmPFC stimulation coordinates were chosen based on our

previous report of neural correlates of SOM in the dmPFC (Montreal Neuro-

logical Institute [MNI] target x/y/z coordinates in millimeters: 2/44/36). cTBS

was compared with an order-balanced control condition as shown in (A).
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Figure 3B). Therefore, our experiment provided sensitive mea-

surements of behavioral SOM. As previously (Wittmann et al.,

2016), we define SOM by reference to the difference between

cooperative and competitive trials; i.e., as the interaction of S-

performance (O-performance) with the cooperative/competitive

context (Figure 3C; Figure S4). This takes into account the fact

that the influence of S-performance on O-ability estimates is

positive in cooperation but negative in competition; during coop-

eration, we overestimate others’ abilities at times when we

perform very well ourselves, but in competition, we underesti-

mate others’ abilities whenwe are performing very well currently.

Note that SOM is a decision-related rather than learning-related

effect (SOM effects reflect the current social context of compe-

tition or cooperation between the S andO as opposed to the pre-

vious social context that prevailed when S and O last interacted).

Moreover, our experimental design was constructed carefully to

ensure that trial outcomes and winnings were decorrelated from

S- and O-abilities (see Experimental task in the STAR Methods).

The full general linear model (GLM) from which the statistical

results in Figures 3A and 3B are derived is shown in Figure 4

and is identical to one used previously by Wittmann et al.

(2016). The filled bars in Figure 4 indicate the relevant SOMint ef-

fects. The analysis shown in Figure 4 controls for appropriate

ability estimation (the effect of S-performance on S-ability esti-

mates and the effect of O-performance on O-ability estimates).

Moreover, by including the ‘‘context’’ variable (coded as 1 for

cooperation and �1 for competition), it also controls for the

fact that people estimate O-ability per se as more positive in

cooperation than in competition (t(55) = 16.652, p < 0.001), but

the same is not the case for S-ability (t(55) = �0.494, p =

0.624). This may reflect an optimism bias in the estimation of

O-ability—estimating O-ability in a way that would lead partici-

pants to believe they will maximize cooperative and competitive

success. Importantly, by showing these effects in the same GLM

as the SOMint effects, we demonstrate that the SOMint effects

persist even after controlling for appropriate ability estimation

and possible optimism biases. This result highlights the speci-

ficity and independence of the SOM effect: ability estimation

for each player is affected by the performance of the other player

in a manner that is dependent on the social context.

Disruption of the dmPFC silences neural signatures
of SOM
In a previous study (Wittmann et al., 2016), one of the two SOM

effects, SOMint(S/O), was directly related to neural activity in

the dmPFC (in contrast, dmPFC activity was not directly corre-

latedwith SOMint(O/S) but insteadwith othermeasures of influ-

ence of O-performance on S-ability). Just as the effect of S-per-

formance on O-ability changed depending on social context, the

dmPFC carried an S-performance signal that was significantly

different in cooperation compared with competition (S-perfor-

mance 3 context). We refer to this signal as the neural SO-

Mint(S/O) signal. Strikingly, in our past report, behavioral and

neural SOM effects correlated across participants, suggesting

that neural activity in the dmPFC is critical for coordinating esti-

mates of self and other abilities (Wittmann et al., 2016). Here we

examine whether disturbing neural SOMint(S/O) representa-

tions in the dmPFC is possible with cTBS and whether any

such changes in neural computations cause measurable

changes in behavioral SOMint(S/O). Specifically, the dmPFC

might coordinate self/other representations in one of two ways.

If dmPFC constructs shared representations between self and

other (for instance, to guide joint actions; Tomasello et al.,

2005), then dmPFC disruption should decrease behaviorally

observed SOMint(S/O), making estimates of O-ability more in-

dependent from S-performance. Alternatively, the dmPFC may

be critical for keeping estimates of self and other separate, in a

manner akin to the way that the lateral orbitofrontal cortex main-

tains separate representations of choices so that outcomes are

attributed correctly to the choices that caused them and not to

other choices made close in time (Seo et al., 2014; Walton

et al., 2010). In this case, disturbing dmPFC activity should in-

crease behaviorally observed SOMint(S/O), making estimates

of O-ability less distinguishable from S-performance.

A B C

Figure 3. Behavioral SOM in the baseline data

(A and B) SOM is present in the no-cTBS data of the current experiment. Controlling for appropriate ability estimation (Figure 1A), S-ability estimates increase with

increasing O-performance during cooperation relative to competition when S-ability estimates decrease with increasing O-performance (SOMint(O/S), where

‘‘int’’ denotes the interaction term; see Figure 1B for an intuitive explanation of the effect sizes). The same difference is apparent when participants estimate

O-ability with more positive influence of S-performance in cooperation compared with competition (SOMint(S/O)).

(C) Each SOM effect can be expressed by a single number indexing the difference in effect sizes between contexts (shown here: S-performance 3 context in

O-ability rating; SOMint(S/O)). Positive SOMint(S/O) indicates that O-ability is influenced more positively by S-performance in cooperation compared with

competition. The strength of the behavioral SOMint(S/O) effect was, in our previous report, directly related to a neural SOMint(S/O) signal in the dmPFC

(Figure S4).

Data are represented as mean ± SEM, and * denotes p < 0.05. See also Figure S4.
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We directly investigated neural SOMint(S/O) effects in a

sphere (16-mm radius) around our dmPFC stimulation coordi-

nates (z > 3.1, p = 0.05 family-wise error [FWE] corrected; Table

1; related effects are shown in Figure S5) as in a recently reported

cTBS-fMRI study (Hill et al., 2017). Because the vertex group

provided a control for application of cTBS per se, we compared

the cTBS effects in the dmPFC group (cTBS� no-cTBS) directly

with the vertex group (cTBS � no-cTBS). Strikingly, we found a

significant change in neural SOMint(S/O) when applying cTBS

to the dmPFC (Figure 5A; SOMint(S/O) in the dmPFC/vertex

3 cTBS/no-cTBS interaction), indicating a stronger difference

in SOMint(S/O) effect sizes in the dmPFC compared with the

vertex group. Closer inspection of the causal effect of cTBS on

neural SOMint(S/O) revealed that they were mostly driven by

a strong reduction of S-performance signals in competitive trials

in the dmPFC compared with the vertex group (Figure 5B; S-per-

formance during competition in the dmPFC/vertex 3 cTBS/no-

cTBS interaction). This effect was even strong enough to survive

whole-brain correction (z > 3.1, p = 0.05 FWE). A significant

reduction in S-performance effect size during competition was

also present when examining the dmPFC group in isolation (Fig-

ure 5C; dmPFC, cTBS/no-cTBS). This indicates that neural

SOMint(S/O) was reduced after cTBS to the dmPFC (Figure 5D;

see Figure S6 for corresponding vertex data). One reason why

the cTBS effect might have been particularly pronounced during

competition is that S-performance was especially strongly

represented under this condition in the dmPFC during no-

cTBS. The dmPFC might be particularly important in scenarios

where representations of self and other must be kept separate,

and this is particularly the case during competition. Therefore,

cTBS-induced disruption of dmPFC activity weakened neural

SOMint(S/O).

For transparency, Figure 6 shows unthresholded brain-wide

effects for the contrasts presented in Figure 5. No additional sig-

nificance tests were performed on these whole-brain maps. In

addition to the dmPFC region of interest (ROI), additional ROIs

relevant for social cognition are highlighted: perigenual anterior

cingulate cortex (pgACC), subgenual ACC (sgACC), and poste-

rior temporoparietal junction (pTPJ). These regions are included

as visual aids for locating relevant activations. The pTPJ is, apart

from the dmPFC, perhaps the main ROI in social cognition

research, and activity in this area often co-occurs with signals

encoded in the dmPFC. We have taken a pTPJ mask from a

recent study identifying subregions within the TPJ according to

resting-state functional connectivity (Mars et al., 2012). The

pgACC and sgACC were recently identified as carrying social

signals (Lockwood and Wittmann, 2018; Lockwood et al.,

2016; Will et al., 2017), and these regions are of particular rele-

vance to the current study; social signals were identified in the

pgACC in our previouswork (Wittmann et al., 2016).We therefore

took an ROI centered on the S-performance effect from that pre-

vious study (Wittmann et al., 2016). The sgACC is of particular in-

terest in light of a recent combined cTBS-fMRI study that finds

that the effect of cTBS on social computations in the TPJ

spreads to the dmPFC but also to the sgACC (Hill et al., 2017).

This suggests that similar network effects might be observable

in our study. Effect sizes in Figures 6B and 6C are also high in

the pTPJ. The pTPJ and dmPFC are part of a wider social cogni-

tion network, making it plausible that some information is trans-

ferred or shared between both areas.

Disruption of the dmPFC increases behavioral SOM
Finally we assessed whether the effect of cTBS on neural

SOMint(S/O) was sufficient to alter behavioral SOMint(S/O).

We went back to our behavioral regression, analyzing O-ability

ratings using the index of behavioral SOMint(S/O) illustrated

in Figures 3C and 4. We performed the same comparison as

with the fMRI data, comparing the difference in behavioral effect

sizes for cTBS and no-cTBS conditions between the dmPFC and

vertex groups. Causal manipulation of behavioral SOM by

dmPFC neurostimulation was again evident when we examined

behavior. There was a significant interaction between group

(dmPFC/vertex) and stimulation (cTBS/no-cTBS) (2-way mixed

effects ANOVA, F(1,54) = 6.681, p = 0.012; Figure 7).

A B Figure 4. Full behavioral GLMs used for the

baseline data

(A and B) The full GLM used to estimate S-ability

(A) and O-ability (B) applied to the no-cTBS data

(collapsed over the no-cTBS sessions in the

dmPFC and vertex groups). These are the GLMs

used to derive the statistical significance for the

effects shown in Figure 3. Regressors included S-

performance andO-performance, the trial’s social

context (cooperate/compete, coded as 1/�1), as

well as the relevant interaction terms (see Rating

GLM2 for S - with interaction by social context and

Rating GLM2 for O - with interaction by social

context for details). Filled blue bars highlight SOM

interaction (SOMint) effects. SOM regressors were

calculated as the interaction of context and the

relevant performance history (S-performance 3

context for O-ability regression [A] and O-perfor-

mance 3 context for S-ability regression [B],

respectively). Figures 3A and 3B show these effects in GLMs that separate cooperation and competition trials (see Rating-GLM1 for S - binned by social context

[cooperate/compete] and Rating-GLM1 for O - binned by social context [cooperate/compete] for details). Significance testing, however, as done previously

(Wittmann et al., 2016), was conducted on the SOM effects, indicated by the filled bars.

Data are represented as mean ± SEM, and * denotes p < 0.05.
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SOMint(S/O) was increased significantly in the dmPFC group

when applying cTBS (paired t test, t(27) = 2.578, p = 0.016),

but this was not the case in the vertex control group. Within

the dmPFC group, there was no significant correlation of neural

(contrast of parameter estimates [COPE] images extracted from

the cluster in Figure 5B) and behavioral SOMint(S/O) (Pearson

r =�0.205, p = 0.295). This suggests that dmPFC cTBS causally

increases SOMint(S/O) in behavior and, hence, decreases the

degree to which assessments of others’ abilities are indepen-

dent of knowledge about one’s own performance. This effect

was behaviorally specific (Figure S7). In contrast, mean neural

and behavioral signatures of the complementary effect,

SOMint(O/S), were not affected by cTBS over the dmPFC.

We did find, however, that the dmPFC induced correlated

changes in SOMint(O/S) behavior and SOMint(O/S) neural

activity; people who showed the greatest reduction in

SOMint(O/S) neural activity with dmPFC cTBS showed the

greatest increase in SOMint(O/S) behavior (Figure S8).

DISCUSSION

Using non-invasive brain stimulation, fMRI, and computational

modeling, we show that disruption of dmPFC causally affects

neural signatures of SOM and the expression of SOM in

behavior. The dmPFC is a key brain region for social-cognitive

function (Ruff and Fehr, 2014; Saxe, 2006; Schurz et al., 2014)

and encodes conspecifics’ actions and outcomes in macaque

monkeys (Noritake et al., 2018; Yoshida et al., 2012) and in hu-

mans (Piva et al., 2019; Sul et al., 2015; Suzuki et al., 2012).

A B

C D

Figure 5. DmPFC-cTBS alters neural and

behavioral SOMint(S/O)

(A–C) Neural changes of SOMint(S/O) in a sphere

around the stimulation coordinates (pre-threshold

masked, z > 3.1, p = 0.05 FWE).

(A) There is a stronger difference in SOMint(S/O)

between cTBS and no-cTBS sessions in the

dmPFC group compared with the control group

(SOMint(S/O): dmPFC [cTBS – no-cTBS] > vertex

[cTBS – no-cTBS]); the yellow cluster indicates a

more positive difference in SOMint(O/S) effect

sizes in the dmPFC group compared with the

vertex group.

(B) Closer inspection reveals that this effect is

mainly driven by competitive trials in which

S-performance is represented more weakly after

cTBS stimulation of the dmPFC (left: dmPFC

[cTBS – no-cTBS] > vertex [cTBS – no-cTBS]; the

blue cluster indicates a more negative difference

of S-performance effect sizes in the dmPFC group

compared with the vertex group during competi-

tion). The effect is negatively signed; i.e., S-per-

formance is represented relatively more weakly

during dmPFC cTBS.

(C) Considering only the dmPFC group, S-perfor-

mance in competition is decreased significantly in

the cTBS compared with the no-cTBS condition

(dmPFC [cTBS – no-cTBS]; again, the sign of this

effect is negative).

(D) To illustrate the directionality of the effects

shown in previous panels, (C) illustrates the neural

effect sizes from the cluster shown in (B), right

side, for S-performance in the dmPFC group.

Application of cTBS reduces the difference between S-performance effect sizes in cooperation and competition; i.e., neural SOMint(S/O) is reduced after cTBS

application (blue/red indicate cooperation/competition trials).

Data are represented as mean ± SEM. See also Figures S5 and S6.

Table 1. MNI peak coordinates of activation clusters

Contrast

Peak

coordinates

x/y/z (mm) z value

S-performance 3 context

(neural SOMint(S/O)), dmPFC

area 9 (cTBS – no-cTBS) >

vertex (cTBS – no-cTBS) (GLM1)

6/46/30 3.94

S-performance during competitive

trials, dmPFC area 9 (cTBS – no-

cTBS) > vertex (cTBS – no-cTBS)

(GLM2)

�4/46/24 �4.27

S-performance during competitive

trials, dmPFC area 9 (cTBS – no-

cTBS) (GLM2)

0/44/26 �3.91

All contrasts were calculated in spherical ROIs (16-mm radius) centered

on the cTBS stimulation site in the dmPFC (MNI x/y/z coordinates in mm:

2/44/36) prior to thresholding.
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Correlative signatures of one’s own and others’ performance in

the dmPFC predict the degree to which SOM occurs and peo-

ple confuse their own ability with the ability of others and vice

versa (Wittmann et al., 2016). We show that disruption of

the dmPFC weakened these neural signatures of SOM. As a

consequence, the degree to which people exhibit behavioral

SOM increased; the ability estimated for the other player was

influenced more positively by S-performance in cooperation

compared with competition. We show the existence of these

effects while controlling for a variety of possible confound

effects, such as appropriate ability estimation (the influence of

O-performance on O-ability estimation and the influence of

S-performance on S-ability estimation) and optimism biases af-

forded by the social context.

Analogously, in the non-social decision-making domain, the

brain holds representations not just of individual choices and

their values but also representations that reflect their value in

aggregate. For example, a region on the boundary between

the lateral orbitofrontal cortex and ventrolateral prefrontal cortex,

47/12o, appears to be critical for forming and maintaining repre-

sentations of specific choice values based on appropriate links

between choices and rewards (Howard and Kahnt, 2018; Rude-

beck et al., 2017;Walton et al., 2010). In contrast, other signals in

the anterior insula and amygdala, respectively, reflect how good

the environment is in general—the global reward state (Wittmann

et al., 2020)—and less precise estimates of choice value (Chau

et al., 2015; Jocham et al., 2016; Klein-Fl€ugge et al., 2019). These

brain regions are very different from those usually linked to social

cognition, such as the TPJ, the gyrus of the anterior cingulate

cortex, or the dmPFC (Apps et al., 2016; Dal Monte et al.,

2020; Lockwood et al., 2018; Ruff and Fehr, 2014). However, it

may be that different brain networks exhibit a relative specializa-

tion for social or non-social information based on their connectiv-

ity but that some of the computations performed in them are

qualitatively similar (Hunt and Hayden, 2017).

A

B

C

Figure 6. Brain-wide subthreshold effects related to SOM

Brain-wide effects are shown for the contrasts presented in Figure 5. Colors

present uncorrected z-maps thresholded at z > 3.1, z > 2.7, and z > 2.3 (red

colors indicate positive effects, and blue colors indicate negative effects). For

transparency, further to a dmPFC ROI, additional ROIs relevant for social

cognition are highlighted: perigenual ACC (pgACC) (MNI coordinates, x/y/z: 0/

40/6), subgenual ACC (sgACC) (MNI coordinates, x/y/z: 9/26/�14; taken from

Hill et al., 2017), and posterior temporoparietal junction (pTPJ) (anatomical

mask from Mars et al., 2012).

(A) There is a stronger difference in SOMint(S/O) between cTBS and no-cTBS

sessions in the dmPFC group comparedwith the control group (SOMint(S/O):

dmPFC [cTBS – no-cTBS] > vertex [cTBS – no-cTBS]). The effect is positively

signed.

(B) The SOMint(S/O) effect in the dmPFC is driven mainly by the competitive

trials where S-performance is represented more weakly after cTBS stimulation

of the dmPFC (left, S-performance during competition: dmPFC [cTBS – no-

cTBS] > vertex [cTBS – no-cTBS]). The effect is negatively signed.

(C) Considering only the dmPFC group, S-performance in competition is

decreased significantly in the cTBS compared with the no-cTBS condition (S-

performance during competition: dmPFC [cTBS – no-cTBS]). As in (B), again,

the sign of this effect is negative.

See also Figures S5 and S6.

Figure 7. dmPFC cTBS alters behavioral SOMint(S/O)

The neural changes in SOMint(S/O) (Figure 4D) translate into behavioral

changes in SOMint(S/O). SOMint(S/O) is increased when applying cTBS to

the dmPFC compared with no-cTBS, and this effect is stronger than the effect

observed under the vertex control condition (yellow/green indicate cTBS/no-

cTBS groups). Data are represented as mean ± SEM, and * denotes p < 0.05.

See also Figures S7 and S8.
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Disruption of the dmPFC decreases neural signatures of SOM

and increases the degree to which people merge estimates of

their own performance with estimates of other’s performance.

This suggests a default tendency for representations of the self

and of others to interact as a function of social context. Such a

predisposition may have served a group-living species well in

many situations where an individual’s strength is a function of

their allies’ and opponents’ strengths (De Dreu et al., 2016;

Sch€ulke et al., 2010; Wittmann et al., 2018) but may produce sur-

prising and even problematic effects when social comparison

operates in a wider sphere, as in contemporary society (Allport,

1924; Festinger, 1954; Toma et al., 2010). The neural representa-

tion of S-performance in the dmPFC serves to keep estimates of

one’s own and others’ abilities separate and is essential for a

correctly calibrated sense of self.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Marco

Wittmann (marco.k.wittmann@gmail.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
We have deposited all choice raw data in an OSF repository. Behavioral results in this paper are derived from these data alone.This

repository also comprises the full MATLAB behavioral analysis pipeline including reinforcement learning model, regression analyses

and plotting scripts. A README inside the repository explains the details of its use. The access code is: https://accounts.osf.io/login?

service=https://osf.io/h7jf8/

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
65 participants participated in the fMRI experiment. Nine of those participants were excluded from the data analysis due to premature

cessation of the experimental session (n = 2; no data were available for two participants who terminated the experiment after the

pre-experimental procedure described below), technical difficulties with the task program or button box (n = 4), inability to follow

the standardized experimental structure (n = 2) or report of the belief that the experiment involves deception (n = 1). The final sample

contained 56 participants (age range 18-39 years, 26 female). Two of these 56 participants aborted a scanning session after the

majority of the session was completed but prior to its full completion; their data was included in all analyses. Of these 56 participants,

28 were assigned to the dorsomedial prefrontal cortex (dmPFC) group and 28 were assigned to the vertex group. The two groups

underwent identical experimental procedures that only differed in the stimulation site where transcranial magnetic stimulation

(TMS) was applied. Our sample size is in line with a recent cTBS-fMRI study examining the causal effects of disrupting another

node of the social brain network, the temporoparietal junction (Hill et al., 2017).

Subjects received £70 for participating in the fMRI experiment and two preceding behavioral sessions (see below). In addition, they

received extra earnings which were allocated according to their task performance (mean = £13.96; std = £2.85; range: £6.23 -

£18.18). The ethics committee of the University of Oxford approved the study and all participants provided informed consent

(MSD-IDREC-C2-2015-017, MSD-IDREC-C1-2013-133).

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Jasp version 0.11.1 Jasp RRID:SCR_015823

Presentation Neurobehavioral systems RRID:SCR_002521

MATLAB R2018a MathWorks RRID:SCR_001622

FSL FMRIB, Oxford RRID:SCR_002823

Brainsight Rogue Research RRID:SCR_009539

Spike2 Software Cambridge Electronic Design Limited RRID:SCR_000903

Behavioral data and analysis code https://osf.io https://accounts.osf.io/login?

service=https://osf.io/h7jf8/

Others

Magstim Rapid2 stimulator (TMS) Magstim https://www.magstim.com

D440 Isolated EMG amplifier Digitimer https://www.digitimer.com/

Hum Bug 50/60 Hz Noise Eliminator Quest Scientific https://www.digitimer.com/

CED power1401 Cambridge Electronic Design Limited RRID:SCR_017282
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METHOD DETAILS

Pre-experimental procedure
Before participating in the fMRI experiment, participants took part in two preparatory sessions on separate days. First, they took part

in a ‘‘taster session’’ (�1.5h), which served to explain TMS as well as the experimental task to the participants, to perform face-to-

face TMS safety screenings, and tomeasure participants’ activemotor thresholds. In addition, we also applied a short, 10 s version of

the TMS used in the experiment, continuous theta burst stimulation (cTBS) (Huang et al., 2005), at a lower standardized intensity

(25%of themachine output) over the approximate location of dmPFC. This waswell below the duration and intensity required to yield

neural effects andwasmeant to familiarize participants with the procedure that would be used on the final day in the fMRI experiment.

On a subsequent day, participants were invited to a structural magnetic resonance image (MRI) brain scan (30minutes overall), which

was a prerequisite to perform neuronavigated cTBS on the final day during the fMRI experiment.

cTBS stimulation sites
During the fMRI experiment, we stimulated two separate groups of participants in two different target stimulation sites using cTBS. In

one of the groups, we aimed to disrupt neural activity in dmPFC where we have previously identified neural correlates of self-other-

mergence (SOM) (Wittmann et al., 2016). We used the relevant peak coordinates of effects found in our previous study in Brodmann

area 9 (O-performance effects in Figure 3Aii/Table 1 of our previous report (Wittmann et al., 2016); Montreal Neurological institute

(Mazziotta et al., 2001) (MNI) x/y/z coordinates in mm: 2/44/36). The stimulation site for the other group, the vertex, served as a

non-active control condition and was defined as the intersection of the central sulci from both cortical hemishpheres (Hill et al.,

2017) (MNI /x/y/z coordinates in mm: 0/-34/72). The fact that at this location in the brain the distance between brain tissue and skull

is very large as well a lack of relevant neural activation found in this location in the previous study (Wittmann et al., 2016) meant that

the vertex was an appropriate control stimulation site. Both stimulation sites were defined in standard MNI space and warped to

participant specific structural images using FMRIB Software Library’s (FSL) (Jenkinson et al., 2012) non-linear transformations

(FNIRT). All participants were blinded as to the site where they were stimulated with cTBS and experimental procedures, including

the neuronavigation setup, were identical for all participants. Experimenters were necessarily aware of the stimulation site in order to

be able to apply cTBS.

TMS protocols
All TMS stimulation was applied with a Magstim-rapid-2 stimulator (MagStim, Whitland, Carmarthenshire, UK) connected to a 70mm

figure-8 coil. We used TMS on two occasions: on the first day during the ‘taster session’ to measure participants’ active motor

threshold (Rossini et al., 1994) and during the fMRI experiment on the final day to apply neuronavigated cTBS (Huang et al.,

2005). We used the same TMS coil on both occasions.

During the taster session on the first day, we assessed participants’ activemotor threshold for the left motor cortex ‘hotspot’, which

is the scalp location where TMS evoked the largest MEP amplitude. The active motor threshold was defined as the minimum stim-

ulation intensity sufficient to produce a motor-evoked potential (MEP) in the contralateral small hand muscle, i.e., right first dorsal

interosseous (FDI), in at least 50% of trials, when the participants exerted a constant pressure between the index finger and the

thumb (20%ofmaximum force) (Rossini et al., 1994). Electromyographic (EMG) activity in right FDI was recorded with bipolar surface

Ag-AgCl electrode montages. Responses were bandpass filtered between 10 and 1000 Hz, with additional 50 Hz notch filtering,

sampled at 5000 Hz, and recorded using a CED 1902 amplifier, a CEDmicro1401 Mk.II A/D converter, and PC running Spike2 (Cam-

bridge Electronic Design).

On the day of the fMRI experiment, we performed a standard neuronavigated cTBS protocol (Huang et al., 2005) immediately prior

to one of two fMRI sessions that participants performed on the day. The stimulation site was projected onto the high-resolution, T1-

weighted MRI brain scan of each participant using frameless stereotactic neuronavigation (Brainsight; Rogue Research). Inion, na-

sion, right ear and left ear were used for registration of the structural image. The stimulation protocol comprised 600 pulses in bursts

of three pulses at 50Hz that are applied every 200 ms following a procedure first described by Huang et al. (2005). When applied over

the motor cortex projecting to muscles from the contralateral hand, cTBS reduces motor-evoked potentials recorded from these

hand muscles. This reduction in motor output generated from the motor cortex is likely to be caused by reduced efficacy of synaptic

transmission lasting approximately half an hour (Huang et al., 2007; Polanı́a et al., 2018). A TMS coil was held in place tangentially to

the skull by an experimenter during stimulation. The total stimulation duration was 40 s. We obtained the cTBS intensity by taking

80% of the output of the TMS machine at each subject’s active motor threshold. So, for example, if a participant’s motor threshold

lies at 45% of the TMS machine’s maximal output, the stimulation intensity was 80%*45% = 36% of the machine’s maximal output.

The use of such a low subthreshold intensity (80% active motor threshold) had the advantage of ensuring decreased spread of stim-

ulation away from the targeted site. For dmPFC stimulation, due to the proximity to facial nerves, we tested participants with a

maximal cTBS intensity of 45% percent output of the maximal TMS machine (mean = 35.5%, std = 4.3%, range = 27% - 44%).

For vertex, we used a stimulation intensity of maximal 51%machine output (mean = 42.2%, std = 6.9%, range = 29% - 51%), which

was the highest available output intensity for the TMSmachine. Participants for which a stimulation intensity higher than these thresh-

olds were determined after the initial taster session did not go on to participate in the fMRI experiment. Participants rested for 40 s

after the end of the stimulation to avoid washout as in previous studies (O’Shea et al., 2007). Afterward, participants went from the
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stimulation room to the directly adjacent scanning room and started the fMRI session immediately. The scan sequence started

approximately 5 minutes after the end of the cTBS application (including the 40 s rest). Participants took approximately half an

hour to perform the experimental session in the MRI scanner. Any unnecessary movements were held to a minimum in this process.

fMRI experiment
On the day of the fMRI experiment, participants were again screened for TMS and MRI safety and received a reminder of the task

instructions. They performed two experimental sessions in the fMRI scanner (Figure 2). Both sessions lasted approximately

30 minutes and were separated in time by at least one-hour. During a break between the two sessions, participants relaxed and filled

in some questionnaires unrelated to the purpose of the TMS manipulation (�20 minutes). One of the sessions was preceded by the

cTBS stimulation. No cTBSmanipulation was performed preceding the other session. Importantly, the order of the two sessions was

counterbalanced across participants. Prior to both fMRI sessions, participants performed a short ‘starter-session’ on a desktop

computer. The experimental task during the starter-session was identical to the fMRI session and served to familiarize participants

with the task before entering the scanner and to ensure that in-scanner behavior was maximally informative (see Experimental task

section below). The starter-session took 5-7 minutes. One of the two starter-sessions was immediately followed by cTBS (neurona-

vigation and target localization had been performed before the starter-session). Participants also performed a starter-session before

the other fMRI session, but they completed an unrelated questionnaire for 4minutes between the starter-session and fMRI session to

mirror the temporal delay imposed by the cTBS procedure. This means that, for participants that had cTBS in the first session, the

mock questionnaire was completed in the second session, whereas for participants who had the cTBS in the second session, the

mock questionnaire was completed in the first session. The length of the mock questionnaire matched approximately the duration

of the cTBS application. The questionnaires were discarded after the experiment and no analyses were performed on them. In the

end, participants were fully debriefed about the experiment.

Experimental task
Weused an experimental paradigm established in our previous work (Wittmann et al., 2016) that we summarize in the following. Addi-

tional details are described in detail in the section below. Modifications of the paradigm only served to adapt it to the requirements of

a paired cTBS-fMRI experiment and are detailed after the summary of the experimental task below in this section.

In the paradigm, participants learned about the approximate performance levels of themselves and two other players over trials.

The only way to do this was to track explicit, parametric performance feedback for each player that was provided at the end of the

trial. Prior to the performance feedback, participants performed one iteration of a so-called minigame, i.e., a short, reaction-time

based task with a continuous performance scale. Participants were instructed to perform as well as possible in these minigames

and believed the performance feedback that was subsequently presented reflected how well they themselves and the other players

had performed in it. Note that the performance feedback only referred to the immediately preceding run of the minigame; it was not

aggregate feedback over a longer time period. Approximate performance levels could only be learned by tracking performance feed-

back over several trials and using a recency-weighted average score to predict future performance. While participants believed that

the performance feedback originated from their true performance in the minigame, it was in fact taken from a pre-determined per-

formance schedule that was adapted from our previous study (Wittmann et al., 2016). However, exceptions from this pre-determined

schedule existed and constituted cases of veridical performance feedback; this was an additional measure to assure that perfor-

mance feedback was believable (see section below). Participants were told that the performance of the other player was pre-re-

corded on a different day.

Before the performance feedback was provided and the minigame performed, participants made an engage/avoid decision and

subsequently rated the expected performance of themselves (S) and one of the two other players (relevant other, O). O was pseudo-

randomly determined by the experimenter. The engage/avoid decision was set in either a cooperative or competitive context (exper-

imenter-determined, pseudo-random). It reflected either the decision to engage in or avoid a cooperative relationship with O on the

current trial (as opposed to playing individually), or the decision to engage in or avoid a competitive relationship with O on the current

trial (as opposed to playing individually). Importantly, trials either offered the cooperative decision or the competitive decision; there

was no choice between cooperation and competition. This allowed us to study contextual effects on the ratings that participants

made about their own andO’s performance feedback on the current trial. The participant’s goal was to predict the performance feed-

back that they themselves andOwould receive at the end of the trial and the payoff scheme incentivized them to do this as accurately

as possible. To do this, they had to carefully track the performance history of each player and the ratings provided a detailed readout

of participants’ current player-specific performance estimates. Importantly, the experimental design was carefully constructed to

ensure that trial outcomes and winnings were decorrelated from both S and O abilities. For example, on trials on which S and O per-

formances were high, the threshold which participants had to surpass to win a trial might also be high. This meant that performance

estimates for both players were dissociable from general reward expectation. This should also minimize the impact of any reinforce-

ment-related effects on ability estimations. More detailed description of the paradigm is given the section below. Instructions are

explained in detail in Figure S1 and Figure S2 presents a detailed timeline of trial events.

We modified several aspects of the paradigm to adapt it to cTBS-fMRI. First, for both fMRI sessions, we used the identical per-

formance schedule, i.e., the series of trials and the performance feedback given was exactly the same in both sessions. This allowed

us to assess participant’s neural mechanismof self and other performance learning twice on the same performance schedule with the
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only difference being the application of cTBS before one session and not the other. However, to avoid any learning effects from one

session to the next one, we designed separate minigames for each fMRI session (‘time minigames’ in one session and ‘color mini-

games’ in the other; Figure S3). This, together with the instructions, created the impression that both sessions measured different

aspects of cognitive performance. Participant were told they played with other players during each session. No participant realized

that they performed the same schedule twice. The assignment of the time and color minigames to the first or second fMRI session

was counterbalanced across participants and orthogonal to the application of cTBS. Second, we shortened the number of trials of

the fMRI session to 88 trials per session for participants to be able to complete the session within a time frame over which cTBS ef-

fects could be assumed to last (Huang et al., 2005). We also slightly shortened the timings of some trial events to accommodate as

many trials as possible in the 30 minutes window (see Figure S2 for timings). Third and finally, we introduced ‘starter-sessions’ to

each fMRI session (see fMRI experiment section). These starter-sessions employed the sameminigames as the respective fMRI ses-

sion and their performance schedule naturally preceded the one administered in the fMRI session. However, as our paradigm re-

quires learning over trials, the initial trials of each session cannot provide meaningful readouts of participants’ performance esti-

mates. Participants first need to form initial impressions about each players’ performance levels before these can be assessed.

As cTBS effects diminish quickly, the usage of starter-sessions allowed us to shift this behaviorally uninformative time period to a

time before cTBS was applied. Starter-sessions preceded the cTBS application. They lasted for 16 trials with no engage/avoid de-

cisions and no ratings performed during the initial four trials. Starter-sessions were similarly performed prior to the other fMRI session

with an appropriate break mirroring the time delay cause by cTBS application (see fMRI experiment section). This enabled us to

assess the effects of cTBS on self and other performance learning from the very first trial of the fMRI sessions onward.

Details on design, schedule, ability ratings, and performance feedback
In this section, we give some additional details on experimental task details that we also provided when we introduced the paradigm

previously (Wittmann et al., 2016). On each trial, participants performed a minigame (short reaction time-based tasks) and received

performance feedback for all three players involved. Participants were told that the minigames had been tested on a larger sample of

participants and that performance feedback in the minigame reflected individual performance relative to that sample. In the phases

before and after the minigames, three scales ranging from 1-15 points were shown with the initials of the three players below. Per-

formance feedbackwas displayed on these scales in the feedback phase. The initials shownwere adjusted to be appropriate for each

individual participant. The initials created a social frame for the experiment without using explicitly social cues such as faces.

On each trial, participants also made an engage/avoid decision and rated the expected performance for themselves and a relevant

other (O); except the first four trials of the starter-session (see Experimental task). The identity of O (whether it was the player shown to

the right or to the left of the participant on the screen) was experimenter-determined and pseudo-random. Each trial took place either

in a cooperative or in a competitive social context. In a cooperative trial the engage/avoid decision was between cooperating or re-

fraining from cooperating, while on a competitive trial, the choice was between competing or refraining from competing. If partici-

pants took the ‘‘avoid’’ choice, then that meant that they simply either won or lost a small number of points (1.5 points) at the end

of the trial. Win or loss occurred with the same probability and hence the ‘‘avoid’’ choice had an expected value of zero on average.

Participants were informed about this. However, if participants took the ‘‘engage’’ choice in the cooperative context then they opted

to ally themselves with O to see if together they could perform well enough for their average points to exceed a threshold level (which

varied from trial to trial and was explicitly cued on the screen). If they did exceed the threshold after engaging, they gained reward

points on that trial, but if they fell short of the threshold, they lost points. By contrast, if they took the ‘‘engage’’ decision in the compet-

itive context then the other player became an opponent. The difference between the participant’s and opponent’s performances then

had to exceed a threshold (again the threshold was variable). In both cooperation and competition, the reward points earned or lost

were proportional to this difference to the threshold (i.e., a win, a loss or neither of the two). In summary, the social context was critical

when decisions to engage were made. Reward outcomes for engage/avoid choices were determined by minigame performances of

S, O, and a threshold that varied unpredictably from trial to trial:

EngagePayoffCompetition = ðfeedbackS � feedbackOÞ � threshold (1a)

EngagePayoffCooperation = ðfeedbackS + feedbackOÞ
�
2� threshold (1b)

‘‘Feedback’’ in Equations 1A and 1B refers to performance feedback observed at the end of the trial for S and O and ‘‘threshold’’

abbreviates the height of the cued threshold on the trial. While the likely performance feedback for S and O could be estimated

from performance feedback on previous trials, the threshold varied unpredictably from trial to trial and was used to dissociate reward

expectation from performance expectation and to make sure that participants did not make their engage/avoid decisions before the

beginning of the current trial. Participants found the meaning of the thresholds intuitive when the task was being explained to them

and their task behavior confirmed that they had understood the task. See Figure S1 for task instructions.

Participants then also provided an estimate of their ability on each trial by rating the expected performance for themselves (S) and

the relevant other (O) for the upcoming trial of the minigame. The order of S and O ratings was randomized across trials. As explained

above, although both of the two other players performed the minigame simultaneously, participants were only paired (to compete or
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cooperate) with one of the other players (the relevant other, O). Therefore, only O, and not the third player, was relevant for a trial’s

engage/avoid decision. However, the identity of O switched between trials. On each trial, after the minigame, participants received

performance feedback about themselves as well as about the performances of the other two players. See Figure S2 for a detailed trial

timeline including timings of all trial events.

The goal of the participants in the experiment was to collect as many rewards (points) as possible, as these were translated into

monetary rewards at the end of the experiment. Participants could achieve this by making correct engage/avoid decisions and by

predicting performances accurately in the ratings. For all three players, including the participants themselves, performance feedback

on every trial was predefined. In other words, the feedback about performance was independent from participants’ actual perfor-

mance in the minigames (see, however, ‘‘false start trials’’ for a case of veridical performance feedback in the Feedback part of

this section below and Figure S2C). This was necessary to control and match performance feedback between participants as

well as between participants and the two other players. Importantly, it allowed us to use the identical performance schedule for

both fMRI sessions, i.e., the series of trials and the performance feedback given was exactly the same in both sessions. This was

crucial to test the effects of cTBS on performance learning of self and other, as it was only the application of cTBS that differed while

the experimental schedule was the same.

We designed two ‘time minigames’ and two ‘color minigames’ which were used for the first and second fMRI session. See Fig-

ure S3 for details on the minigames including timings. Across participants, we counterbalanced which one was shown in the first

session and second session. Importantly, the order of the cTBS application (cTBS was either applied before the first or the second

fMRI session) was randomized across participants and orthogonal to the minigame identity. In addition, other task features were

counterbalanced across participants and orthogonal to those previous manipulations as well as to each other. These additional fea-

tures include the mapping between minigame and associated performance feedback schedule for the participant, the association

between the other players (left/right) and their performance feedback schedules, and the button mapping between left/right and

engage/avoid choice.

The fMRI experimental schedule contained 88 minigame trials. The design was a 2[social context] x 2[partner] x 2[minigame] fully

crossed design (11 trials per cell). This meant that a trial could be either cooperative or competitive [social context: cooperation or

competition], the O could be either ‘‘player’’ 1 or 2 [O: Other1 or Other2] and, in each trial, participants played one of two minigames

[minigame: game1 or game2]. The trial type order was pseudorandom and the same for all participants. The starter-session had 16

trials overall and comprised an approximately similar number of trials per trial type. The first four did not include an engage/avoid

decision to allow participants to first learn about the approximate performance levels of each player.

In summary, trials comprised an engage/avoid decision, two ratings (for S and O), a minigame phase, and a feedback phase. In-

structions are detailed in Figure S1, trial timelines including timings in Figure S2 and minigame features in Figure S3.

As already mentioned, participants provided S and O ability ratings. For each rating, initially, a tick indicated a value on the per-

formance scale (rating marker) and participants indicated if expected performance (for S or O as appropriate) would surpass or

fall below the rating marker (Figure S2B). A positive rating (i.e., performance is expected to be above the rating marker) was

made with one button and a negative rating (i.e., performance is expected to be below the rating marker) was made with the other

button. As performance feedback was always expressed in integers, the rating makers were always set between two integers

(X.5-values) such that either of the two responses was always correct. The rating marker was updated from trial to trial based on

the rating choices for the respective player using a staircasing procedure to increase sensitivity of the ratings. A positive rating

resulted in an increase of the rating marker’s value by one point in the next trial of the sameminigame for the given player; a negative

rating resulted in a decrease by one point. Participants received a small payoff for the accuracy of the ratings. To reduce incentives to

perform badly on the minigames, negative ratings never yielded payoffs. For positive ratings, participants won or lost 0.25 points

depending on whether the subsequent performance feedback received surpassed or fell below the rating marker. Note that the

magnitude of the rating payoff was insignificant compared to the payoff for the engage/avoid decision.

Feedback was chunked together in three components which were presented in randomized order. The first component was the

performance feedback for S and O, which was presented simultaneously with the information about the accuracy of the participants’

ratings (Figure S2B). The second component was the payoff of the engage/avoid decision. For this, a cue indicating the trial’s choice

appeared on the right side of the screen (Figure S2A) together with circles representing coins that were won (yellow circles with a plus

sign) or lost (red circles with a minus sign). At the same time, only for engage choices, the performance feedback average (cooper-

ation trials) or performance feedback difference (competition trials) was displayed on the scales on the right side of the screen. The

third component was the performance feedback of the other player that was not the O (irrelevant other). The initials of this player were

displayed in a different color and the performance was irrelevant for any payoff. Note although the performance feedback for this

player was irrelevant to the current trial, it would become relevant in the future when the currently irrelevant other would become

the relevant other. The three feedback components appeared in random order to control for sequence effects.

Two types of trials deviated from the described structure. First, the first four trials of the starter-session (which took place outside of

the scanner) were ‘‘starter trials’’ (two with one minigame, two with the other). Those trials were for participants to form initial ability

estimates about the players. For this reason, in starter trials, there was no option to cooperate or compete and no ability ratings were

made. Second, for trials where participants performed very badly in a minigame (‘‘false starts’’) the feedback phase was adjusted.

The performance thresholds for false start trials are discussed in Figure S3. In false start trials, participants received no performance

feedback for themselves, but only for the other players (Figure S2C). The sole payoff for false start trials was a loss of three points
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independent of participants’ ratings and engage/avoid choice. Participants were instructed about this and asked to avoid producing

false start trials. It was explained that extremely bad performances would be detected by the computer running the experiment and

discarded as false starts to sort out performance slips that were, for instance, due to inattentiveness and did not reflect a player’s

‘‘true’’ performance. This procedure was used to make the pre-determined feedback in other trials more believable as the feedback

in false start trials was actually determined by true minigame performance. Note that participants were also told during the instruc-

tions that there would be a special type of false start trial if one of the other players performed very badly. However, this never

happened in the experiment. Starter trials and the feedback phase of false start trials were excluded from fMRI analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Reinforcement learning modeling
We used the exact same reinforcement learning (RL) model as in our previous work (Wittmann et al., 2016) (see Details on reinforce-

ment learning model architecture section below). Again, as in our previous work, we submitted the computational variables from our

fitted model to a general linear model (GLM) analysis predicting the rating data. The rating GLM was specifically designed to test for

self-other-mergence (SOM; e.g., dependence on another player’s performance when estimating one’s own ability or dependence on

one’s performance when estimating another player’s ability) as opposed to appropriate ability estimation (e.g., relying on one’s own

performance to estimate one’s own ability, relying on the other player’s performance when estimating that other player’s ability). The

RL model ensured that we could capture an index of the longer-term average performance levels observed for oneself and the other

players – necessary prerequisites for the GLM analysis. The computational variables capturing these longer-term average perfor-

mance levels were termed S-performance (for oneself) and O-performance (for the relevant other). Importantly the effects we tested

for in the subsequent GLM were orthogonal to the RL model fitting because we tested for SOM effects, whereas the RL model only

assumed appropriate ability estimation. To avoid bias in the model fitting, for each group (dmPFC and vertex), we fitted both fMRI

sessions together for all participants, which resulted in a single set of free parameters per group (one set for the dmPFC and one for

the vertex group). The modeling was implemented using MATLAB 2018a.

Details on reinforcement learning model architecture
Foreveryparticipant,wefittedastandard reinforcement learningmodel tomodel theperformanceestimatesassigned to the threeplayers

for each trial (Self, S; Other1, O1; Other2, O2).We used twominigame specific performance estimates per player (either for the two color

minigames or the two timeminigames). The performance estimates summarize the previous performance history of the players and are

hence referred to as performance. They reflect the expected performance based on a recency-weighted average of past performance

feedback. This resulted in six player and minigame specific performance estimates: performanceS-T1, performanceS-T2, performan-

ceO1-T1, performanceO1-T2, performanceO2-T1, performanceO2-T2. T1/T2 denote the two session-specific minigames. On every trial t,

the three performance estimates associated with the current minigame were updated using a prediction error (PE) based learning rule

with a learning rate a as a free parameter:

Performancet + 1 = performancet +a3PEt (1)

(formula was applied separately for S, O1, O2, given T1 or T2)

The PE itself was calculated based on the specific performance estimate and performance feedback of the player in the current

minigame as:

PEt = feedbackt � performancet (2)

(formula was applied separately for S, O1, O2, given T1 or T2)

In false start trials, the performance estimate for S was not updated and remained unchanged until the next trial of the same mini-

game. No PEs for S were calculated for false start trials (the other players never displayed false start trials), but PEs were calculated

for the other players. For the first trial of the fMRI session for each player for each minigame, the last performance feedback from the

starter session in the respective minigame was taken as a starting value for performance.

In each trial in the fMRI session, participants made a decision about cooperating or competing (depending on the current context)

with the relevant other (O) and in addition provided ratings of both S and O. Both engage/avoid decisions and ratings were modeled

based on performance estimates for S andO, calledS-performance andO-performance.S-performance is the performance estimate

for Self associated with the minigame of the current trial (performanceS-T1 or performanceS-T2). Similarly, O-performance refers to

performanceO1-T1, performanceO1-T2, performanceO2-T1 and performanceO2-T2, depending on which other player was currently

selected as the O and which minigame took place. Therefore, S-performance andO-performance represented minigame and player

specific performance expectations of the players involved in the current trial’s engage/avoid decision. The same was the case for the

PEs associated with S and O.

Participants’ ratings of a player reflected expectations of whether they would perform either better or worse than a level indicated

by a rating marker the position of which was adjusted from trial to trial using a staircase procedure explained in the above sections on

experimental designs. Expectations expressed in the ratings that exceeded or fell below the ratingmarker were referred to as positive

and negative ratings, respectively. To calculate the probability of a positive rating (p(positiveRating)), we used a softmax function with
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an inverse temperature b. This was done separately for S and O using S-performance andO-performance, respectively as well as the

player specific rating marker:

Pðpositive RatingÞ = exp½b3 ðperformance � ratingmarkerÞ�
exp½b3 ðperformance� ratingmarkerÞ�+ 1

(3)

(this formula was applied separately for S-performance and O-performance given their respective rating markers)

Having calculated the probability of a positive rating on a given trial, the probability of the rating actually observed was derived,

again, separately for S and O:

P ratingð Þ=
(
p positive Ratingð Þ if rated positively
1� p positive Ratingð Þ if rated negatively

(4)

(formula was applied separately for S and O)

Participants also received a small gain or loss at the end of a trial if they hadmade a positive rating and the expectation indicated by

that rating had been accurate (rating bonus of 0.25 points). As explained in the Experimental Procedures, to ensure that there was no

temptation to perform poorly in the task no rating bonuswas awardedwhen a negative rating had been given. The expected value of a

rating (EVrating) was calculated as

EVrating =

(
p positive Ratingð Þ � 0:5½ �3 23 ratingbonus if rated positively
0 if rated negatively

(5)

(formula was applied separately for S and O)

Note the formula was chosen such that the bounds of EVrating for positive ratings are 0.25 and�0.25, which are the points that can

be lost or won for positive ratings.

In addition to completing a rating for S and O on each trial, participants made a decision to engage in or avoid cooperating/

competing. Given the objective payoff scheme of the task (Equations 1A and 1B from the Experimental Design section above),

the expected value of engaging in cooperation/competition (EVengage) was calculated in an analogous way:

Competition : EVengage =S--performance �O--performance� threshold (6a)

Cooperation : EVengage = S--performance+O--performanceð Þ�2� threshold (6b)

A decision to avoid cooperating/competing led to a gain of 1.5 points and a loss of 1.5 points with equal probability (see previous

section on experimental design) and participants had been instructed that the expected value of the decisions to avoid cooperat-

ing/competing was zero:

EVEAD =

(
EVengage if engage
0 if avoid

(7)

Therefore, EVengage was used as decision variable for the engage/avoid decisions to calculate the probability of engaging in coop-

eration or competition:

PðengageÞ = exp
�
b3EVengage

�
exp

�
b3EVengage

�
+ expðb3EVavoidÞ

(8)

Note that EVavoid is zero in Equation 8, as explained above. The probabilities of the actual choicesmadewere derived fromp(engage):

EVEAD =

(
P engageð Þ if engage
1� P engageð Þ if avoid

(9)

The full reward expectation on each trial (EVchosen) was defined as the sumof the expected values from both ratings and the expected

value of the engage/avoid decision (Equations 5 and 7):

EVchosen = EVS�Rating +EVO�Rating +EVEAD (10)

The reward prediction error (RPE) was calculated based on all reward outcomes of a trial including both rating reward outcomes and

the engage/avoid decision reward outcome (see above Equation 2 for the calculation of player specific prediction errors):

RPE = Reward � EVchosen (11)

Overall, the free parameter set q comprised two free parameters: the learning rate a and the inverse temperature b. We fitted these

parameters byminimizing the negative log likelihood (nLL) over all trials N from both fMRI sessions from all participants of each group
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together (dmPFC or vertex), resulting in one set of fitted free parameters per group. For the calculation of nLL, we treated ratings and

engage/avoid decisions equally. So the decisions used to fit themodel included equal proportions of ratings of S, ratings of the O and

engage/avoid choices.

nLL = �
XN
n= 1

logðpðdecisiontjqÞÞ (12)

Behavioral data analysis
We analyzed behavioral data using MATLAB 2018a and Jasp version 0.11.1. We analyzed how participants estimated their own and

O’s ability by applying a logistic general linear model (GLM) regression to the rating data in which participants predicted the perfor-

mance outcome for both players based on their observed history of past performance in theminigames. This allowed us to examine if

and how TMS changed self-other-mergence. As described in the section Reinforcement learningmodeling, we used a reinforcement

learning model to capture an index of the longer-term average performance levels observed for oneself and the O. The two key vari-

ables from the model feeding into the GLM analyses were S-performance (recency-weighted performance estimate for self) and

O-performance (recency-weighted performance estimate for relevant other). The critical effects of interest to measure self-other-

mergence were the influence of O-performance on S-ability estimation and the influence of S-performance on O-ability estimation.

The key effects of interest were the interactions of S-performance and O-performance with the Context variable (cooperation and

competition, coded as 1/-1). Following this definition, SOMint(S/O), for example, quantifies the context-dependent influence of

S-performance influence on O-ability estimation. Importantly, by using the interaction term we quantify that influence in complemen-

tary ways in cooperation compared to competition, testing for a positive effect of S-performance on O-ability estimation in cooper-

ation and in parallel for a negative effect of S-performance on O-ability in competition. The inclusion of S-performance in the S rating

and O-performance in the O rating (the appropriate performances that should be used for ability estimates) only served as control

variables in the GLMs. Note that all SOMGLM effects are orthogonal to the fitting done in the RL model, which only assumed appro-

priate ability estimation. We used the exact identical two GLMswe had used in our previous work with this paradigm (Wittmann et al.,

2016). We describe them in detail in the section Behavioral GLM analysis below. After applying the logistic GLMs to each participant

independently, based on the resulting beta weights for the SOM-related effects, we calculated a mixed effects ANOVA (group:

dmPFC and vertex; condition: cTBS and no-cTBS) and also a paired t test for the dmPFC data alone (Figure 7). This constituted

the most critical test of the cTBS effects on self-other-mergence. For demonstrating SOM effects in the baseline no-cTBS data (Fig-

ures 3 and 4), we used variance-weighted beta weights (MATLAB’s stats.t object) as index of effect size to de-weight outlying data

points as we have done previously (Trudel et al., 2021). The reason for the small trial number was to ensure that the experimental

session would finish before cTBS effects subsided. The cTBS-induced changes we report (Figure 7), however, were calculated

based on standard beta weights.

Behavioral GLM analysis
We used the exact identical two GLMs we had used in our previous work with this paradigm (Wittmann et al., 2016). As described in

the section Reinforcement learning modeling in the STAR Methods, we used a reinforcement learning model to capture an index of

the longer-term average performance levels observed for oneself and the O. The two critical variables from themodel feeding into the

GLM analyses were S-performance (recency-weighted performance estimate for self) and O-performance (recency-weighted per-

formance estimate for relevant other). Note that all SOM GLM effects are orthogonal to the fitting done in the RL model, which

only assumed appropriate ability estimation.

We used two rating GLMs that both comprised the same set of regressors of interest, but one of them binned trials into contexts of

cooperate and compete trials (the two types of social context), whereas the other one took the interactions of S-performance andO-

performancewith context. Context was coded as 1 for cooperation and�1 for competition. As in our previous work (Wittmann et al.,

2016), these interaction terms were the crucial measures for SOM. They are underlined in the formulas below: the influence ofO-per-

formance on the S rating and the influence of S-performance on the O rating. To calculate the interaction terms, we normalized the

performance variable and multiplied it with the normalized context variable as we did before. Following the rationale of our previous

work (Wittmann et al., 2016), we restricted both rating GLMs to trials in which participants had chosen to engage. Only in those trials,

the social context of cooperation or competition is critical (rather than on ‘‘avoid’’ trials when participants simply took the default op-

tion of a random payment; see the Experimental task section and Figure S2). Note also that the use of S-performance in the S rating

and O-performance in the O rating (the appropriate performances that should be used for ability estimates) only served as control

variables in the GLMs. For all GLMs, all regressors (also interaction terms) were normalized (mean of 0 and standard deviation of 1).

First, the binned GLM, rating-GLM-1, was used for visualization only. It was applied separately to cooperate and compete trials:

Rating-GLM1 for S - binned by social context (cooperate/compete):

S-performance, O-performance, ratingmarker-S

Rating-GLM1 for O - binned by social context (cooperate/compete):

O-performance, S-performance, ratingmarker-O
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Note that the ‘‘ratingmarker’’ refers to the position of the rating tick against which ability is estimated in the current trial (see the

Experimental task section and Figure S2). As output, we used the variance-corrected beta weights (MATLAB’s stats.t object) to ac-

count for the relatively low number of trials as we have done before (Trudel et al., 2021). Note that no effects in this GLM were tested

for significance. The next GLM, rating-glm-2, used the same regressors, but instead of binning, it employed the interaction terms of

performance with social context. These interaction effects were tested for significance of SOMint (‘‘int’’ denotes ‘‘interaction’’). A pos-

itive interaction effect, for example forS-performance in theO rating, indicated that the effect ofS-performancewas stronger in coop-

eration than in competition. Again, the analyses were restricted to engage trials.

Rating GLM2 for S - with interaction by social context

S-performance, O-performance, S-performance x Context, O-performance x Context, Context, ratingmarker-S

(SOMint(O/S) is underlined)

Rating GLM2 for O - with interaction by social context

S-performance, O-performance, S-performance x Context, O-performance x Context, Context, ratingmarker-O

(SOMint(S/O) is underlined)

Imaging Data Acquisition and Preprocessing
Imaging data were acquired with a 3-Tesla Siemens MRI scanner by using a 32-channel head coil. T1 weighted structural images

were collected with an echo time (TE) of 4.75msec, a repetition time (TR) of 3secs, an inversion time (TI) of 100msec, 1x1x1mm

voxel size and a 256x176x224 grid. Functional images were collected by using a Deichmann echo-planar imaging (EPI) sequence

with TE = 30msec, TR = 3sec, 3x3x3mm voxel size, 87� flip angle, 30� slice angle and z-shimming to avoid signal dropout in frontal

areas such as medial orbitofrontal areas (Deichmann et al., 2003). Two fieldmap scans (sequence parameters: TE1, 5.19ms; TE2,

7.65ms; TR, 488 s; flip angle, 60 ; voxel size, 3.5 3 5.5 3 3.5 mm) of the B0 field were also acquired and used to assist distortion-

correction.

FMRIB’s Software Library (FSL) was used to analyze imaging data (Jenkinson et al., 2012). We pre-processed the data

through fieldmap correction, and temporal (3 dB cut-off 100sec) and spatial filtering (Gaussian using full-width half maximum of

5mm) and using FSL’s MCFLIRT to correct for motion. The functional scans were registered to standard MNI space using a

two-step process: (1) registration of subjects’ whole- brain EPI to T1 structural image was conducted using BBR with (nonlinear)

fieldmap distortion-correction, and (2) registration of the subjects’ T1 structural scan to 1mm standard space was performed using

an affine transformation followed by nonlinear registration. We used FSL’s MELODIC to filter out noise components after visual

inspection.

fMRI whole brain analysis
On the first level, we closely adapted the single GLM we had used in our previous work with this paradigm (Wittmann et al., 2016). It

uses the identical set of regressors to model self and other ability estimation: S-performance, O-performance, and context as in our

previous work. In addition, we constructed a second fMRI GLM that, instead of including the interaction terms (S-performance x

context, O-performance x context), bins trials into cooperative and competitive trials to be able to analyze TMS effects separately

in the two types of social contexts. These two GLMs operate therefore in a similarly complementary manner as the two behavioral

GLMs (see section Behavioral GLM analysis) and are detailed in the First level fMRI analyses section below.

The results of the first level GLM were submitted to a fixed-effects second level analysis. For each participant, irrespective of

dmPFC or vertex group, we calculated the difference in activation between the cTBS and the no-cTBS session. These difference

maps were then submitted to a third-level analysis. We calculated two-sample unpaired t tests to compare whether the difference

in neural activation change due to dmPFC stimulation was indeed stronger than the neural change in the vertex group. In addition, we

also examined differences between the cTBS and no-cTBS sessions for the dmPFC group only using one-sample t tests. For sta-

tistical analysis of the third-level analysis, we used Flame 1+2 mixed effects analyses (Jenkinson et al., 2012). All results were

FWE cluster corrected at p < 0.05 using a cluster-defining threshold of z > 3.1 (p < 0.001) (as recommended in Eklund et al.,

2016) within an a priori defined search volume. Following previous studies examining cTBS induced neural changes (Hill et al.,

2017), the search volume was a 3-dimensional sphere with 16mm radius. It was centered on our stimulation site in dmPFC, where

we previously identified neural correlates of self-other mergence (MNI x/y/z coordinates in mm: 2/44/36).

First-level fMRI analyses
We used two fMRI GLMs for our whole brain analyses. Following the rationale of our behavioral analyses, the two GLMs employ the

same set of regressors to model self and other ability estimation but differ in whether they model the social context (cooperation or

competition) as an interaction effect or whether trials are binned into cooperative and competitive trials. The first GLM, the interaction

GLM,was virtually identical to the one used in our previousworkwith this paradigm (Wittmann et al., 2016). BothGLMs employS-per-

formance andO-performance – indices of the longer-term average performance levels observed for oneself and the relevant other, O,

derived from our reinforcement learningmodel (see Reinforcement learningmodel architecture section above and the Reinforcement

learningmodeling section). All parametric and binary regressors were normalized (mean of zero, standard deviation of one). Themain

phase of interest was the decision phase. However, we also modeled the feedback phase to account for variance associated with it

and therefore also report feedback-related regressors for completeness.
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As in our previous work (Wittmann et al., 2016), fMRI-GLM 1 time-locked the decision phase, as a constant regressor, to the onset

of the engage/avoid decision onset. The duration was set to the response time for the engage/avoid decision (Figure S2Aii: phase 1,2

and 3). We added several parametric regressors to the decision phase:

d S-performance

d O-performance

d S-performance x Context,

d O-performance x Context,

d Context (binary regressor; cooperation 1, competition �1)

d Threshold

The two interaction terms were calculated as explained in the Behavioral GLM analysis section above. As in our previous paper

(Wittmann et al., 2016), we calculated the Threshold regressor (reflecting the performance that had to be reached to satisfy the

cooperative or competitive choice; see Equations 1A and 1B in the Experimental paradigm section above) over all trials by

combining the threshold regressors from cooperate and compete conditions and normalizing them separately for each condition.

The timing parameters for the parametric regressors were identical with the constant decision phase regressor, except for the

Threshold. The threshold onset was delayed by one second, as the threshold was only revealed one second after engage/avoid

decision onset and knowledge of the threshold was necessary to make an engage/avoid decision (see phase 2 in Figure S2Ai). The

duration of the Threshold regressor was set to the time between its onset and the response button press in the engage/avoid

decision

As in our previous report (Wittmann et al., 2016), we used two constant regressors with a duration of zero time-locked to the

response of S andO rating to account for the rating events. In addition, we used parametric regressors accompanying these constant

regressors accounting for the reward expectations associated with the ratings (EVrating for S and O from Equation 5 in the Reinforce-

ment learning model architecture section above for S rating and O rating, respectively).

The feedback phase was similarly modeled as a constant regressor and parametric modulators. Note that trial feedback

was chunked in three components and presented in randomized order (see Experimental Paradigm section above and

Figure S2).

I) S and O performance feedback and rating reward outcomes

II) Engage/avoid decision reward outcome

III) Irrelevant other performance feedback

Duration of the constant feedback regressor was 2.5 s, the timewindow in which the three feedback components initially appeared

(phase 2 onset to phase 4 onset in Figure S2Aii). Parametric regressors were modeled as stick functions (i.e., duration of zero) time-

locked to the appearance of the relevant feedback component (indicated in brackets in the following). They comprised:

d S-performance (I)

d O-performance (I)

d S-PE (Prediction error for Self) (I)

d O-PE (Prediction error for relevant other) (I)

d Context (I)

d O-PE x Context (I)

d Overall reward payoff from the trial (II)

d Threshold (II)

d Prediction error - irrelevant other (III)

Roman numerals in brackets after the regressors indicate to which feedback component a regressor was time-locked. Feedback

phases from false start trials were not modeled.

In addition, the GLM contained three additional regressors of no interest. First, a regressor time-locked to all button presses,

modeled as stick functions, to account for movement-related effects. Second, two regressors captured brain signals associated

with each minigame, spanning the time period from minigame onset to response button press.

fMRI-GLM-2 modeled the same constant events as the previous GLM. It modeled the decision phase in exactly the same way, but

separately for competitive and cooperative trials. It used the same parametric regressors of interest as above, but without the inter-

action terms:

d S-performance

d O-performance

d Threshold

The Threshold regressor was slightly time-delayed for the same reasons as above.
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All remaining regressors modeled events of no interest. We report them for completeness. We again modeled constant regressors

with a duration of zero time-locked to the response of S and O rating to account for the rating events, but separately for cooperative

and competitive trials.

The feedback phases were also split for cooperative and competitive trials. Wemodeled the following parametric regressors time-

locked to the different feedback phases (Roman numerals in brackets indicate the same phases as above):

d S-performance (I)

d O-performance (I)

d S-PE (Prediction error for Self) (I)

d O-PE (Prediction error for relevant other) (I)

d EVrating for both ratings combined (I)

d reward prediction error for both EVrating combined (I)

d S-pChange (I) [the absolute change in true minigame performance from one trial to the next one; see (Wittmann et al., 2016 for

details]

d Threshold (II)

Region of interest (ROI) analyses
We illustrate the neural effects of interest by reading out FSL’s COPE (contrast of parameter estimates) maps for both groups and

both stimulation conditions.We extracted the S-performance effects in competitive and cooperative trials from fMRI GLM2 (see First

level fMRI analyses section; Figure 5D; Figure S5) in a mask that was derived from the contrast S-performance in competitive trials

(Area 9 (cTBS – no-cTBS); see Figure 5D and Table 1) by thresholding it at z > 3.1.
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Supplementary figures 

 

Figure S1. Instruction procedure.	Related to Figure 1. The experimental instructions followed a precise 
schedule implemented according to our previous study (Wittmann et al., 2016). On the day of the ‘taster 
session’, when participants were introduced to TMS and their active motor thresholds were assessed, they 
also received full instructions for the experiment (~1 hour), which were briefly recapitulated on the day of the 
fMRI experiment. In the instructions, participants were told that they would play minigames during the 
experiment and their goal was to learn about their own and other players’ performances and to make good 
decisions and ratings based on these pieces of information. It was emphasized that doing this would enable 
them to collect as many reward points as possible during the experiment and that they should aspire to do 
that. They were told that the performances of the other players that they would be paired with in the fMRI 
experiment was pre-recorded and they agreed that their own, fully anonymized performance data could be 
used for the same purpose in the future. Participants were instructed on the minigames, the ratings, and the 
engage/avoid decisions and performed example trials. The instructions were designed such that actual 
performance learning would only take place in the fMRI experiment to maximize learning effects in the 
scanner. (a) To still guarantee familiarity with the minigames, a written explanation of the two minigames was 
complemented with a short practice session, in which participants performed trials of each minigame. During 
those trials, the experimenter was present and made sure that participants understood the minigames. No 
explicit performance feedback was given on those trials to avoid performance learning. (b)To guarantee that 
participants understood the logic of the engage/avoid decision and the ratings, participants performed 
example trials that did not include minigames, but instead a placeholder screen. This allowed participants to 
adjust to the trial events and experience the reward outcomes of ratings and decisions. Importantly, the 
performance feedback on those trials followed no across-trial contingencies and consisted mostly of the 
highest or lowest performance feedback for the players. This was done to make these example trials very 
different from the trials experienced in the main experiment. Although participants could not learn anything 
during those trials and therefore could make no well-grounded decisions, they were asked to invent and 
verbalize reasons for their ratings and decisions so that the experimenter could make sure that they 
understood their logic (e.g. "This is a cooperate trial. I press the "engage" button, because although the 
threshold is high, I think we will perform very well. I rate myself and the other one positively, because I think 
we will both perform well...").  In sum, participants practiced all aspects of the experimental task, but in such a 
manner that they could not yet learn about their performance. Participants were told that their goal in the 
experiment was to collect as many points as possible and that points would be translated into monetary 
reward at the end of the experiment. It was emphasized that points could be earned by making good decisions 
and by providing accurate ratings of performance. Despite the substantial time needed for a thorough 
instruction, as in our previous study, most participants found the task intuitive and the behavioral data 
acquired in the experiment (see main text) confirmed that they understood the task.  
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Figure S2. Trial structure, key events, rating rationale, and false starts. Related to Figure 1. (a) All events 
within a trial and their associated timings are depicted. Note that timing of the events is shown underneath 
the arrow and RT (reaction time) means that the respective step only ends when the participant makes a 
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response. Events highlighted in grey are depicted in more detail in (b) as they represent key events within the 
trial: engage/avoid decision, the rating decision, playing of the minigame and the feedback phase. The first 
part of a trial reveals the social context (competition or cooperation), participants then made an engage/avoid 
decision, and provided self (S) and relevant other (O) ratings (a-i). The feedback phase shows performances of 
all players during the minigame and possible points gained or lost from engage/avoid decisions and rating 
decisions. (a-ii). (b) For illustration purposes, the same performance feedback is shown in a cooperative 
context (upper rows) and a competitive context (lower rows). At the beginning of a trial S (initials of the 
participant, middle position), O (initials of one of the two other players relevant for the current trial, left or 
right position), social context (cooperation or competition) and type of upcoming minigame ("Dot" indicates 
the dot task; see supplementary figure 3) is presented. The initials of the irrelevant other player are not 
shown, and the social context is color-coded as green for cooperation and red for competition. These colors 
are also used to indicate the threshold of the current trial (thresholds are shown as bars on the very right). In 
these examples, the choices made (see highlighted tick and cross in the first panel) are to engage in 
cooperation and to avoid competition. The choices are arbitrarily picked for illustration here, but in the 
experiment the decision to engage in cooperation would indicate the expectation that S and O will, together, 
perform better than the threshold of 10; the avoidance of competition would indicate that the participant 
does not expect to perform at least one point better than the O. After the engage/avoid choices, binary ratings 
of S and O take place (second panel) in randomized order. Once a rating has been made, the tick turns from 
yellow to either grey or black depending on whether one expects the selected player to perform respectively 
better or worse compared to the level indicated by the tick. In these examples, O rating occurred first in the 
cooperation trial and S rating occurred first in the competition trial (ratings have already been made and are 
therefore shown in grey/black). These ratings indicate that the participant expects to perform worse than 
10.5, while the O is expected to perform better than 8.5 (see panel (c) for more information on color coding of 
rating ticks). Note that these ratings are consistent with the engage/avoid choices shown in the two examples. 
In the feedback phase (third panel), the previous screen from before the minigame reappears (see a-ii). 
However, the right side of the screen showing the cooperation/competition threshold is occluded if a 
participant had chosen to avoid cooperation/competition in the previous decision phase of the trial. This 
means that in this example trial the threshold is only shown again in the cooperate trial (because the 
participant actually decided to cooperate) and not in the compete trial (because in this example trial the 
participant refrained from competing). In other words, the repeated presentation of the threshold is not a 
feature of the social context, but entirely a consequence of the engage/avoid choice made. Subsequently, 
three feedback components appear in randomized order to control for sequence effects (see legend on the 
right-hand side). In cooperation, the choice payoff is -1 (red coin above threshold), because the average 
performance is 9 while the threshold is 10. In competition, the choice payoff is -1.5 which is due to chance 
(payoff from avoid choices is +1.5 or -1.5 with a 50/50 probability) and independent of performance feedback. 
Note that the participant would have earned a payoff of 3 had the engage choice been taken (performance 
feedback difference of +4 minus threshold of +1). Note that, overall, the magnitude of the rating payoff is 
marginal compared to the engage/avoid choice payoff. (c) Rationale of binary ratings. Before the minigame, 
participants indicated for S and O either a positive or a negative rating reflecting the expectation that the 
player would surpass or fall below a given rating marker. The color change of the rating marker was indicative 
of the choice made; the rating marker turned black for a positive rating and grey for a negative rating. A 
positive rating led to a win or loss of 0.25 points depending on subsequent performance feedback. A negative 
rating led to no change in the points count independent of performance feedback. Therefore, making a correct 
negative rating was associated with a benefit of avoiding losing points while making a correct positive rating 
was associated with a benefit of winning 0.25 points. Note that in panel (a-ii), the performance and rating 
feedback indicate an incorrect negative rating (missed win) for S and an incorrect positive rating (loss) for O. 
Red text in quotes is taken from the participants' instructions where a similar illustration was used. (d) The 
screenshot shows the feedback screen of a false start trial. In false start trials, the true performance of the 
participant in the minigame was below a predetermined threshold for acceptable performances. False start 
trials were a case of veridical performance feedback to ensure that performance feedback in general was 
believable. Participants incurred a loss of 3 points (indicated by the red bar) on those trials and no points could 
be won by the decision or the ratings. The feedback phase in false start trials was not analyzed and no 
prediction error for S was calculated on those trials (reward prediction error and prediction error for others 
were calculated as normal).  



	
	

 

Figure S3. Minigame description. Related to Figure 1. We used two pairs of minigames in the experiment 
(‘color minigames’ and ‘time minigames’), each assigned to one fMRI block. The order of the types of 
minigames was counter-balanced across participants (color minigames were assigned to the first session for 
one half of participants and to the second session for the other half) and this was orthogonal to the application 
of TMS. The minigames were necessary prerequisites for administering performance feedback on every trial, 
which was in fact pre-determined according to a finely balanced and decorrelated schedule. However, 
exceptions from this pre-determined schedule existed and constituted cases of veridical performance 
feedback; this was an additional measure to ensure that performance feedback was believable. These 
exceptions were ‘false start’ trials, in which the true performance was worse than a given performance 
threshold, and this then led to a feedback penalty (see section Experimental Paradigm of the supplementary 
text document). Minigames were short reaction-time based tasks and we designed them to be relatively non-
transparent in the sense that the experience of performing the minigames was not very informative for 
estimating one's ability compared to the explicit performance feedback that was given to the participants. 
Also, we varied the timing parameters of the minigames to make it harder to compare true performance 
across different trials of a minigame and to ensure a temporal jitter between decision and outcome phases. 
The two time minigames were relatively similar to each other (participants estimated a target time period) and 
so were the two color minigames (participants estimated color equivalences). In consequence, the two fMRI 
sessions were framed to the participants as measuring very different aspects of cognitive performance. 
Generating this impression was important, because we used the same performance schedule for both fMRI 
sessions (see Experimental task section in Methods; Supplementary Fig.2). This meant that we could 
investigate and compare the behavioral and neural mechanisms underlying learning with the same 
performance schedule both with and without the application of cTBS. The framing in terms of very different 
types of minigames prevented participants from noticing this similarity and in fact none of the participants 

Time of average optimal response 
(i.e. time of color equivalence): 

2 - 3.5 sec after color change onset

“Press when average color of 
both right squares equals 

average color of both left squares.”

a

d

b

c

Time of average optimal response 
(i.e. time of color equivalence): 

2 - 3.5 sec after color change onset

“Take average of cues that are closest 
together. Compare left and right. 
Press when they have the same 

color on average.”

Green task (Color minigame 2)Blue task (Color minigame 1)

Bar task (Time minigame 2)Dot task (Time mingame 1)

“Press when the time after the 
second cue equals target 

time period.”

“Target time period”
1.1 - 1.6 sec

1 - 1.5 sec
0.2 sec

0.2 sec

0.2 sec

RT

0.3 sec

1 - 1.5 sec 1 - 1.5 sec

“Match the time that the first bar is 
shown (T1) with the time the 

second bar is shown (T2).
 Press after this time.”

“T2”  -   RT

“T1”  -   1.5 - 2.5 sec

Time difference between 
T1 and T2 onset:1.1 -1.6.



	
	

expressed any suspicion spontaneously or after being questioned. Each minigame was performed with one 
response button press with the right index finger and the approximate time for each of the four minigames 
was similar (see figure for timing parameters). As in our previous study, participants performed all four tasks 
very well(Wittmann et al., 2016). We calculated an index of true performance in the tasks in the same way as 
in our previous work(Wittmann et al., 2016). However, this performance index was not used further when 
analyzing behavioral data; it was only used to determine thresholds for the above-mentioned ‘false start’ trials 
(see Experimental task section in Methods; Supplementary Fig.2), which was based on pilot experiments. Note 
again, that except for false start trials, the performance feedback was unrelated to this true performance 
measure. Note that the red text in the panels was used to explain the task to participants, who saw very 
similar illustrations of the task in the instructions. Black text supplements timing information. All varying 
timings were picked from a uniform distribution. (a,b) In the color minigames, two pairs of cues appeared on 
the screen and after an initial stable period, they began to change color until the colors fully reversed. The two 
color minigames, the blue task (panel a) and the green task (panel b), differed with respect to the colors used 
and the spatial organization of the colored cues on the screen. The underlying principle was the same 
however: Participants indicated with a button press when the colors of two of the cues reached the same 
average color as the two other cues that changed color in the opposite direction (red boxes indicate which 
cues were compared). This point of true color equivalence was reached after 2 – 3.5 seconds. (c,d) In the two 
time minigames, participants replicated a given time interval with the goal of matching a target time. In the 
dot task, this target time is the time between two blue dots that appear briefly on the screen in sequence. In 
the bar task, the target time is the time that a bar is initially presented on the screen and the goal is to 
replicate the target time for a second bar that occurs on the screen after a short delay. Target times were 1.1 – 
1.6 seconds for the dot task and 1.5 – 2.5 seconds for the bar task. Although these target times were different, 
the overall time spent on both minigames was similar. 

  



	
	

 
Figure S4. Results of previous report of self-other-mergence (Wittmann et al., 2016). Related to Figure 3. (A) 
Previously, we applied the same statistical analyses to the rating data for S-ability and O-ability and found 
significant SOMint in both cases (blue = cooperative trials, red = competitive trials). Note that, as done here, 
significance testing was performed on the full GLM as reported in Supplementary Fig.5A. (B) Previously, we 
identified dmPFC area 9 using the contrast O-performance (shown in blue). In ROI analyses performed on the 
peak coordinates of this contrast, we found a significant neural SOMint(S-->O) effect that correlated with the 
behavioral neural SOMint(S-->O) effect. Therefore, we used the peak coordinates of the contrast shown in 
panel B as the target location for our dmPFC-cTBS group. Data are represented as mean ± SEM.  
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Figure S5. Additional neural effects of cTBS including sub-threshold activations. Related to Figures 5 and 6. 
Brain-wide effects are shown for the contrasts related to Fig.3A,B. Colors present uncorrected z-maps 
thresholded at z>3.1, z>2.7 and z>2.3 (red and blue represents respectively positive and negative activation). 
For transparency, we are showing additional variables that might potentially have been affected by dmPFC 
stimulation. As in Fig.6 we overlay additional ROIs in areas relevant to social cognition (pgACC, sgACC and pTPJ; 
see Fig.6 and main text for details). Modulation of activation is shown as a difference between cTBS and no-
cTBS sessions in the dmPFC group compared to the control group. We do not observe modulation of activation 
as a result of stimulation (neither whole-brain nor in the ROIs) for (A) context (cooperation=1, competition=-
1), (B) S-performance (performance history of Self), (C) O-performance (performance history of Other), or (D) 
O-PE (Prediction error associated with other’s performance). These results show that dmPFC stimulation was 
specific to the SOMint(S-->O) effects reported in the main text. In relation to the S-performance effect shown in 
panel B and our finding that S-performance was significantly changed during competition, we considered 
whether the S-performance effect in competition was related to the strength of SOM. However, there was no 
correlation between the neural effect of S-performance in no-cTBS during competition (collapsed over both 
groups; ROI taken from Fig.5C) and SOMint(S-->O) (r= -0.140; p = 0.302) during no-cTBS. 
 
 



	
	

 

 
 
Supplementary Figure 6. Neural effects of S-performance in the vertex control group. Related to Figures 5 
and 6. The panel shows the same regressor as main text Fig.5D, performed on fMRI data from the same ROI as 
in Fig.5D, but for the vertex control group. Data are represented as mean ± SEM.  
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Figure S7. cTBS over dmPFC does not impact general task performance. Related to Figures 7.  We conducted 
several behavioral control analyses that targeted different task-related variables that might change as a 
function of the application of cTBS over dmPFC. As for our critical statistical test of interest, the cTBS induced 
change of SOMint(S-->O), we calculated a mixed-effects analysis of variance to test for a dmPFC/vertex by 
cTBS/no-cTBS interaction effect. Despite considering a broad range of task variables, we found no significant 
interaction effects, suggesting that our causal manipulation targeting dmPFC specifically impacted SOMint(S--
>O). (A,B,C) First, we considered reaction times related to the S-ability and O-ability ratings as well as to the 
engage/avoid decision. Such reaction time effects might reveal broad changes in the time necessary to 
compute information for oneself, the other player, or to combine this information flexibly towards a decision. 
Hence, analyses of reaction time might reveal specific deficits in one or several of these domains. We found no 
significant interaction effect either for the reaction times for S-ability-rating (F(1,54) = 0.042, p =0.839), O-
ability-rating F(1,54) = 0.260, p =0.612), or for the engage/avoid decision F(1,54) = 1.670, p =0.202. (D,E,F,G) 
Next, we considered whether the general ability to make decisions in cooperative or competitive contexts was 
impacted by the application of cTBS. Decisions require an integration of self-and other-related performance 
estimates and might be impacted differentially based on whether the context required participants to combine 
performance estimates during cooperation or to contrast performance estimates during competition. 
Therefore, we examined whether the frequency of making an engage choice was altered by the application of 
cTBS over dmPFC. There were no significant interaction effects for the rate of engage choices either in 
cooperation (F(1,54) = 0.062, p =0.804), or in competition (F(1,54) = 0.334, p =0.566). In addition, the payoff 
that resulted from these decisions did not change as a function of the cTBS application either in cooperation 
(F(1,54) = 2.872, p = 0.096) or competition (F(1,54) = 0.030, p = 0.863). (H,I,J,K) After this, we considered 
whether stimulating dmPFC might have affected performance estimation for one of the players in some more 
general way as opposed to in a manner that was specifically related  to self-other-mergence. We compared the 
rate at which a player was estimated as better than indicated by the rating tick (see Supplementary Fig.2 for 
details of the rationale behind the ability rating). However, this measure of rating performance was not 
impacted by the cTBS stimulation either for S-ability ratings (F(1,54) = 0.339, p = 0.563) or for O-ability ratings 
(F(1,54) = 0.001, p = 0.985). In addition, the payoff received for S-ability ratings (F(1,54) = 1.121, p = 0.294) and 
O-ability ratings (F(1,54) = 0.001, p = 0.979) was not significantly impacted by the cTBS. The absence of such 
general performance impairments further suggests that our causal manipulation impacted a very specific 
aspect of self and other-related performance estimation. (L,M,N) We went on to perform an even more 



	
	

sensitive test to assess whether cTBS over dmPFC induced deficits in “appropriate” S-ability or O-ability 
estimation – the degree to which ability estimates reflect performance by the same person (i.e. appropriate 
estimates of O-ability should be based on O-performance and appropriate estimates of S-ability should be 
based on S-performance). Specifically, we extracted the S-performance effect from the S-ability GLM and 
compared it across stimulation conditions and groups. We performed an analogous comparison for the O-
performance effects in the O-ability GLM. Both of these effects assess how much estimates of ability are based 
on the previous history of performance of the same player. We believe that this is the most sensitive measure 
of appropriate ability performance learning in our current set of analyses. We performed this test by 
comparing effect sizes from our main GLMs of interest predicting S-ability and O-ability (Figs.4,7). Note that we 
used the variance-weighted beta weights (Matlab’s stats.t object) for the S-ability GLM to approximate the 
effect sizes because of difficulties in estimate effect sizes for all participants as described in the methods. The 
O-ability GLM employed standard beta weights as proxies for the effect sizes. However, we found no cTBS 
induced changes in appropriate ability estimation either for S-ability (F(1,54) = 1.422, p = 0.238) or for O-ability 
(F(1,54) = 0.094, p = 0.760). (N) Next, we considered whether cTBS over dmPFC might have affect a more non-
specific bias in the estimation of the other player’s performance. As we have shown in Fig.4 (see main text), 
participants showed an other-specific optimism bias in performance estimation. They evaluated the other 
player more positively in cooperation than during competition. Importantly, this bias is present in addition to 
SOMint and, in contrast to SOMint, it is unrelated to the specific levels of performance of the irrelevant player. 
However, the optimism bias in performance estimation (Context effect in O-ability-ratings) was not altered by 
the cTBS (F(1,54) = 0.975, p = 0.328). Together, these results suggest that cTBS over dmPFC specifically altered 
only SOMint(S-->O). It did not affect more general measure of task performance including choice frequencies 
and payoffs during decision, Self-rating and Other-rating. Neither did it induce a general deficit in performance 
tracking for one of the agents, or changed the optimism bias during the O-ability estimation. Instead, as shown 
in Fig.7, cTBS over dmPFC specifically affected the degree to which O-ability was referenced to one’s own 
performance in a context-dependent manner. (O) Finally, we considered whether cTBS might have impacted 
on S-performance during the estimation of O-ability. S-performance is tightly related to our key effect of 
interest, SOMint(S-->O), which is the effect of “S-performance x Context” in the estimation of O-ability. 
Significant effects of S-performance here indicate that cTBS-induced changes in SOM occur mostly in one of 
the two social contexts, cooperation or competition. However, we did not find a significant main effect of S-
performance on O-ability estimation (F(1,54) = 1.712, p = 0.196) suggesting that dmPFC cTBS does not result in 
uniformly increased or decreased effects of S-performance on O-ability and therefore also does not suggest 
that cTBS-induced changes on SOMint(S-->O) are mainly driven by one of the two social contexts. Data are 
represented as mean ± SEM.  
 
  



	
	

 
 

Figure S8. cTBS effects on SOMint(O-->S). Related to Figure 5,6 and 7. In our previous work (Wittmann et al., 
2016), we found that signals in dmPFC were correlated with self-other-mergence in multiple ways suggesting 
that it encodes reciprocal influences of our own performance estimates on estimates of another person and 
vice versa. However, of the two self-other-mergence effects we discovered in behavior, only SOMint(S-->O) was 
directly correlated with neural activity in dmPFC. For this reason, in the main text, we focus on this direction of 



	
	

influence instead of SOMint(O-->S). To complement our results in the main text, in this supplementary figure, 
we examine the effects of cTBS on SOMint(O-->S) following the same analysis steps as for our main analyses. 
(A,B,C) These panels show a series of whole brain analyses examining SOMint(O-->S) related effects in the same 
region of interest in dmPFC. As in Fig.6 in the main text we overlay additional ROIs in areas relevant to social 
cognition (pgACC, sgACC and pTPJ; see Fig.6 and main text for details). We considered whether cTBS might 
have an effect on SOMint(O-->S) (i.e. the variable O-performance x Context, see Methods; panel A). In addition, 
as we had observed that the effects of cTBS on SOMint(S-->O) were particularly pronounced in the competition 
condition, we also separated SOMint(O-->S) into its component parts: O-performance during competitive trials 
(panel B) and O-performance in cooperative trials (panel C). For all three contrast, we assessed cTBS-induced 
neural effects as the difference between cTBS and no-cTBS condition for dmPFC stimulation compared to the 
same difference for vertex control group. This stringent comparison ensured that we could isolate neural 
effects that specifically emerged as a consequence of causally manipulating activity in dmPFC. More formally, 
the contrasts show the effects of “dmPFC (cTBS – no-cTBS) > vertex(cTBS – no-cTBS)” for all three variables of 
interest. However, we found no ROI corrected or whole-brain corrected results for any of the three contrasts 
neither in dmPFC nor in any of the other social cognition-related ROIs. Effects are shown at uncorrected 
threshold levels for illustration (blue and red colors respectively, represent negative and positive activations). 
(D) Despite the absence of neural changes in SOMint(O-->S), we examined whether the cTBS on dmPFC might 
have altered the behavioral effect of SOMint(O-->S). We used the complementary GLM to the one for SOMint(S-
->O) (see main text and Fig.4, Methods) and examined the O-performance x Context variable. We used the t-
stats for inference (see explanation in main text and Fig.4). We predicted that cTBS on dmPFC should have a 
similar effect on SOMint(O-->S) as it had for SOMint(S-->O), namely an increase in self-other-mergence after 
disruption of dmPFC activity with cTBS. Although the direction of effects that we found is consistent with this 
hypothesis, the relevant interaction between group (dmPFC/vertex) and stimulation (cTBS/no-cTBS) is not 
significant (2-way mixed effects ANOVA (F(1,54) = 0.976, p = 0.328). Therefore, consistent with the absence of 
neural changes in SOMint(O-->S), we also did not find behavioral changes in SOMint(O-->S) induced by cTBS over 
dmpFC.  (F) Finally, in the absence of changes in neural or behavioral SOMint(O-->S) in our sample as a whole, 
we considered the possibility that cTBS might have disrupted the neural representation of SOMint(O-->S) more 
in some participants than in others and that these participants might in consequence display increased 
behavioral SOMint(O-->S). We used a cluster-shaped mask of the effect shown in Fig.5B as region of interest, 
because the corresponding neural changes were the strongest cTBS induced effect in our data set. We 
reasoned that cTBS might have the strongest effects on SOMint(O-->S) in this part of the brain. Note that this 
correlation analysis is statistically independent of the ROI selection because it examines individual variation in 
a variable unrelated to the ROI selection. From this ROI, we extracted the second level contrast maps (cTBS > 
no-cTBS) (see Methods for more information on the fMRI analysis pipeline). Indeed, we found a correlation 
between the neural change of SOMint(O-->S) in the dmPFC group and their change in behavioral SOMint(O-->S): 
Participants with a stronger decrease in neural SOMint(O-->S) exhibited a stronger increase in behavioral 
SOMint(O-->S) (r=-0.46; p=0.0139). In summary, these results show that both neural and behavioral SOMint(O--
>S) are not as strongly impacted as SOMint(S-->O) by the application of cTBS over dmPFC. However, the 
correlation between neural and behavioral SOMint(O-->S) effects across participants suggests that dmPFC 
carries information about self-other-mergence also in the direction other-to-self (Wittmann et al., 2016) – 
variation in neural signals predict the degree by which individuals are influenced by others in their self-
assessments. Our results suggest that dmPFC is part of a wider neural network computing the relationships 
between self and other performance in both directions of influence. However, in contrast to the causal 
importance of dmPFC for SOMint(S-->O), SOMint(O-->S) might be controlled by a tightly connected brain region 
that shares information about the SOMint(O-->S) with dmPFC. Data are represented as mean ± SEM.  
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