59 research outputs found

    Distribution and speciation of phosphorus in foreshore sediments of the Thames estuary, UK

    Get PDF
    Estuarine sediments can be a source of Phosphorus (P) to coastal waters, contributing to nutrient budgets and geochemical cycles. In this work, the concentration and speciation of P in 47 cores were examined from the inter-tidal mud flats of the tidal river Thames (~ 120 km). Results of P concentration and speciation were combined with published data relating to known sediment dynamics and water chemistry (salinity) within the estuary to produce a conceptual model of sediment-P behaviour. Results demonstrated significant P desorption occurring after sediment passed through the Estuarine Turbidity Maximum and when the salinity of the river water exceeded ~ 6 ppt. It was found that organic P was desorbed to a greater extent than inorganic P in the lower estuary. Models were used to identify those geochemical parameters that contributed to the Total P (R2 = 0.80), oxalate extractable P (R2 = 0.80) and inorganic P (R2 = 0.76) concentrations within the Thames estuary

    Late Cretaceous and Cenozoic paleoceanography from north-east Atlantic ferromanganese crust microstratigraphy

    Get PDF
    Oceanic hydrogenetic ferromanganese (Fe-Mn) crusts precipitate directly from ambient seawater over millions of years. Their very slow growth rates and physio-chemical properties mean that they adsorb numerous elements from seawater. As such, they provide condensed records of seawater evolution through time that can be used for paleoceanographic reconstruction. Here, we present the results of a high-resolution, stratigraphic, textural and geochemical investigation of a core sample, obtained from a Fe-Mn crust pavement, located on the summit of Tropic Seamount in the tropical north-east Atlantic Ocean. A number of observations and interpretations are proposed, within the context of a well-constrained age model, spanning the last 75 ± 2 Myr. This core has textural stratigraphic coherence with Pacific Fe-Mn crusts formed since the Late Cretaceous, highlighting that global oceanic and climatic phenomena exert first-order controls on Fe-Mn crust development. All major hiatuses observed in the Fe-Mn crusts are contemporaneous with erosion events occurring throughout the Atlantic Ocean. High-resolution geochemical data indicate that there is variability in the composition of Fe-Mn crusts at the cm to μm scale. The dominant factors controlling this include major oceanographic events, mineral textures and micro-topography

    The Effect of X-ray Energy Overlaps on the Microanalysis of Chevkinite (Ce, La, Ca, Th)4(Fe2+, Mg)2(Ti, Fe3+)3Si4O22 Using SEM EDS-WDS

    Get PDF
    A light REE (LREE)-bearing mineral called chevkinite (Ce, La, Ca, Th)4(Fe2+, Mg)2(Ti, Fe3+)3Si4O22, originating from a heavy metal placer deposit Aksu Diamas in Turkey, previously assessed for potential REE extraction as a by-product of magnetite production, was studied using scanning electron microscopy with energy and wavelength-dispersive spectrometers (SEM EDS-WDS). This mineral exhibits analytical challenges associated with severe X-ray energy overlaps between the REE, titanium, and barium. Here, we present an iterative process, showing that SEM EDS-WDS is a viable technique for obtaining good quality quantitative data. SEM EDS-WDS is an in situ, non-destructive, and relatively non-expensive technique, but operator’s experience is essential to obtain good quality data. In cases where the peak fitting remains challenging, in particular, and where the constituents have large differences in abundance, an assessment of the X-ray spectrum to qualitatively assign all peaks is essential prior to quantitative analysi

    Origin and implications of early diagenetic quartz in the Mississippian Bowland Shale formation, Craven Basin, UK

    Get PDF
    Silica cementation exerts a key control on the compaction and geotechnical properties of mudstones, and by extension, the style of hydrocarbon and/or mineral systems present in a given sedimentary basin. Integrated microscopic and bulk geochemical observations demonstrate that siliceous mudstones in the Bowland Shale Formation, a target for UK shale gas extraction, exhibit abundant dispersed, discrete, μm-scale quartz cements, and exhibit silica enrichment (‘excess’) above a local detrital Si/Al threshold of 2.5. Dissolution of siliceous radiolarian tests during early diagenesis is identified as the main source of silica (opal A) required for quartz precipitation, either via opal CT or directly to quartz, and potentially generated as a product of anoxic marine ‘weathering’ (dissolution) of reactive silicates during early diagenesis. Excess silica correlates with free hydrocarbons (S1) normalised to total organic carbon (oil saturation index; OSI); we propose early diagenetic quartz precipitation suppressed pore collapse (‘buttress effect’), retaining the pore space capacity to host oil. Quartz precipitation was likely catalysed, for example via low porewater pH, elevated Al and/or Fe oxide content, and/or abundant labile organic matter. Juxtaposition of siliceous mudstones and mudstones lacking quartz cement indicates silica was immobile beyond the bed scale. Thus metre-scale siliceous packages likely represent more prospective units within the Bowland Shale (in terms of unconventional hydrocarbons), on the basis of early diagenetic biogenic-derived quartz cementation leading to improved hydrocarbon storage capacity coupled to enhanced brittleness. These findings are relevant for shale oil and shale gas systems, specifically where oil retained in pores subsequently cracks to generate gas. These findings also suggest the Bowland Shale is a sub-class of black shale, defined by the potential to host a relatively large volume of early diagenetic fluids, derived from anoxic bottom waters, which were potentially S- and/or metal-bearing. This is potentially relevant for understanding the genesis of adjacent and related Pb-Zn mineral deposits

    Evidence for fracture-hosted fluid-rock reactions within geothermal reservoirs of the eastern trans-Mexico volcanic belt

    Get PDF
    Fractures within hydrothermal systems represent major pathways for fluid flow, and it is therefore vital that we understand processes occurring along them as these may have an impact on productivity of hot fluids during geothermal exploitation. This is especially important where hydrothermal activity crosses contrasting rock types, as fluid movement can result in a range of fluid�rock reactions, mineral dissolution and precipitation, and possible changes in fracture permeability. Here we report evidence of fluid-rock reactions within basement carbonates and overlying volcanic rocks within hydrothermally altered rocks of the eastern trans-Mexico volcanic belt, as part of the Europe-Mexico collaborative ‘GEMex’ project (EU-H2020, GA No. 727550). Identified reactions within basement carbonates include initial high temperature Si-metasomatism linked to igneous intrusions to form minerals such as olivine, wollastonite, garnet and diopside, followed by subsequent lower temperature hydration (back reaction) at lower temperatures, where olivine and diopside hydrate to form serpentine and talc. Reactions of overlying andesitic units include Ca-metasomatism and bleaching through interaction of rising acidic, carbonate-equilibrated fluids. Secondary minerals produced during these reactions appear to seal fractures, implying tectonic reactivation of fractures to maintain long-term fluid flow through fracture zones

    Zircon double-dating, trace element and O isotope analysis to decipher late Pleistocene explosive-effusive eruptions from a zoned ocean-island magma system, Ascension Island

    Get PDF
    In this first detailed study of zircon from Ascension Island, South Atlantic, we take a novel approach combining trace element and O isotope compositional data with double-dating (disequilibrium 238U–230Th and (U–Th)/He) to decipher timescales and dynamics of magmatic processes. The Echo Canyon (EC) sequence comprises small-volume explosive-effusive eruptions of trachyte that tapped a compositionally zoned magma system. Associated volcanic hazards may be constrained from the age of volcanism, duration of magma storage, and magma source and plumbing system character. Zircon U–Th–Pb dating of lithic lava clasts has revealed recurrent evolved volcanism at 1.34 and 0.6 Ma, and 95 ka. The (U–Th)/He zircon cooling ages indicate that most of the EC explosive-effusive sequence erupted in a brief episode at ca. 95 ka. Additionally, uniform 238U–230Th zircon crystallisation ages suggest moderately protracted magma storage with melt present at depth for at most 103–104 years before eruption. The enriched character of zircon trace element compositions, relative to MORB, in the absence of a continental crustal signature in the oxygen isotope values (δ18O range 2.67–5.63‰), suggests the presence of an enriched component in the EC magma source. Furthermore, low δ18O zircon compositions imply assimilation of high temperature hydrothermally altered country rock by the source magma. The mineral assemblage in crystal-poor pumices indicates equilibrium storage conditions: zircon saturation and Ti-in-zircon crystallisation temperatures are consistent with alkali feldspar-melt temperatures. Significantly, zircon crystals were preserved both as macrocryst inclusions and in the groundmass of EC explosive and effusive deposits. These rocks preserve evidence of magma evolution by fractional crystallisation. This process led to pre-eruptive compositional stratification, which is evidenced in the range of whole-rock major and trace element compositions and zircon Zr/Hf values. Notably, zircon crystallisation and cooling ages derived from pumice, lava, and accidental lithic lava clasts in highly explosive pyroclastic deposits, have revealed episodes of evolved magmatism that would otherwise have gone undetected. In addition, the zircon trace element and isotope compositions, in combination with the range of crystallisation ages, evidence progressively deeper tapping of less evolved magma stored in discrete lenses. Thus, a combined zircon geochronological-geochemical approach can place constraints on the ca. 0.6 Ma recurrence of past explosive-effusive pulses of millennial to decamillennial duration and their enriched magma sources. This information is relevant for assessing hazards and informing monitoring and forecasting efforts to assist in managing associated risks for small ocean island volcanoes with particularly vulnerable populations and infrastructure

    Metamorphism obscures primary taphonomic pathways in the early Cambrian Sirius Passet Lagerstätte, North Greenland

    Get PDF
    Correct interpretation of soft-bodied fossils relies on a thorough understanding of their taphonomy. While the focus has often been on the primary roles of decay and early diagenesis, the impacts of deeper burial and metamorphism on fossil preservation are less well understood. We document a sequence of late-stage mineral replacements in panarthropod fossils from the Sirius Passet Lagerstätte (North Greenland), an important early Cambrian Burgess Shale–type (BST) biota. Muscle and gut diverticula were initially stabilized by early diagenetic apatite, prior to being pervasively replaced by quartz and then subordinate chlorite, muscovite, and chloritoid during very low- to low-grade metamorphism. Each new mineral replicates the soft tissues with different precision and occurs in particular anatomical regions, imposing strong biases on the biological information retained. Muscovite and chloritoid largely obliterate the tissues’ original detail, suggesting that aluminum-rich protoliths may have least potential for conserving mineralized soft tissues in metamorphism. Overall, the fossils exhibit a marked shift toward mineralogical equilibration with the matrix, obscuring primary taphonomic modes. Sequential replacement of the phosphatized soft tissues released phosphorus to form new accessory monazite (and apatite and xenotime), whose presence in other BST biotas might signal the prior, more widespread, occurrence of this primary mode of preservation. Our results provide critical context for interpreting the Sirius Passet biota and for identifying late-stage overprints in other biotas
    • …
    corecore