1	DISTRIBUTION AND SPECIATION OF PHOSPHORUS IN FORESHORE
2	SEDIMENTS OF THE THAMES ESTUARY, UK.
3	Andrew M Tye, Jeremy Rushton and Christopher H Vane*
4	British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK.
5	*Author for correspondence (chv <u>@bgs.ac.uk</u>)
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

26 Abstract

Estuarine sediments can be a source of Phosphorus (P) to coastal waters contributing to 27 nutrient budgets and geochemical cycles. Whilst salt marsh sediments have been extensively 28 studied, fewer studies have examined the potential P storage of foreshore or inter-tidal mud 29 flat deposits. In this work, the concentration and speciation of P in 47 cores were examined 30 31 from the inter-tidal mud flats of the tidal river Thames, from west London to the North Sea 32 (~120 km). Results of P concentration and speciation were combined with published data relating to known sediment dynamics and water chemistry within the estuary to produce a 33 conceptual model of sediment-P behaviour. Highest concentrations of total P (median 34 concentration ~3000 mg kg⁻¹) were found close to the centre of London, probably as a result 35 of inputs from major sewage treatment works. However, results showed that significant P 36 desorption occurred after sediment passed through the Estuarine Turbidity Maximum and 37 when the salinity of the river water exceeded ~6 ppt. In the outer estuary median total P 38 concentrations fell to ~1000 mg kg⁻¹. Organic and inorganic species of Phosphorus were 39 extracted and it was found that organic P was desorbed to a greater extent than inorganic P in 40 the lower estuary. Models were developed to predict Total P ($R^2=0.80$), oxalate extractable P 41 $(R^2=0.80)$ and inorganic P $(R^2=0.76)$ from sediment geochemical and river water properties. 42 As the foreshore mud flats consist of deposited suspended sediment, concentrations of 43 inorganic and organic P reflect largely the effects water chemistry has on P speciation and 44 concentration. Thus suspended sediment, along with remobilised sediment from the upper 45 46 estuary are likely to undergo similar desorption processes as they pass down the estuary.

47

Keywords: Estuary, London, Phosphorus, Speciation

48 49

50 1. Introduction

The transport of phosphorus from terrestrial to oceanic environments has important 51 implications for the quality of fresh and marine waters (Eyre and Balls, 1999). The EU Water 52 Framework Directive (Directive EC 2000/60/EC) was introduced to prevent further 53 deterioration and improve the quality of inland surface waters whilst promoting 'good 54 ecological status' (GES) with respect to biodiversity in rivers (Johnes et al. 2007; EA, 2014). 55 56 In addition, the EU waste water Directive (Directive EU 91/271/EEC) aimed to reduce the 57 amount of P released from Sewage Treatment Works. However, whilst statutory legislation for P concentrations in estuarine waters have yet to be introduced in the UK, improvements in 58 the quality of river water leaving the catchment are likely to impact estuarine and marine 59 systems as phosphorus is a key element contributing to eutrophication, algal and planktonic 60 61 blooms (Correll, 1998; Davidson et al. 2014).

62

63 Whilst aquatic P species may dominate the nutrient cycle within estuarine systems, 64 contributions to estuarine P budgets will also be derived from the P stored within the system, including sediments. Thus an initial stage to understanding the contribution sediment-P 65 66 produces within estuarine waters is to obtain knowledge of the sediment distribution and movement, along with changes in sediment-P speciation within the tidal length of the river 67 and estuarine system. The geology of the catchment controls important sediment properties 68 such as texture and geochemistry whilst the catchment geomorphology influences river 69 70 velocity and channel morphology which determines accumulation position, sediment depth, 71 along with trapping systems such as macrophytes (House & Warwick, 1999) or man-made structures. In addition, the locations and type of P inputs (e.g. STWs and soil erosion) will 72 determine inputs of P into the river or estuary. For example, recent work by Tye et al. (2016) 73 74 on the non-tidal river Nene demonstrated an increase in sediment P concentrations with

distance from the head waters, with point sources (STW's) and the increasing urbanisation of
the catchment being considered a major influence on the increasing P sediment concentration.

77

One area of P storage within estuaries which have received less attention than salt marsh 78 79 sediments are foreshore or inter-tidal mudflats. Whereas, salt marsh sediments are considered 80 relatively efficient sinks for nutrients (Coelho et al. 2004), fore-shore mudflats differ in that 81 they are devoid of vegetation and undergo submersion twice a day. They represent a temporary storage zone, but like salt marsh sediments have the potential to supply the water 82 column with P either through mineralisation or P desorption (Coelho et al. 2004; Mortimer et 83 al. 1998; Wang and Li, 2010). Mudflats undergo cycles of deposition and erosion over 84 differing timescales with their elevation and morphology controlled by tidal forcing and river 85 discharge (Baugh et al. 2013). In addition, wind events and biological activity may 86 87 complicate the deposition and erosion events (Deloffre et al. 2007). Phosphorus interactions 88 with sediment in tidal sections of rivers are known to differ markedly from those in fresh water (House et al. 1998; Sundareshwar and Morris, 1999). This is largely through the role of 89 90 increasing salinity and ionic strength that leads to the release of sediment bound P and flocculation of suspended sediments in the turbidity maximum (House et al. 1998). 91 Phosphorus stored within these sediments can exist in many forms including inorganic P 92 species, organic P species and in mineral phases such as calcium phosphate (apatite) or 93 94 vivianite. Redox changes can either initiate the release or fixation of P from oxide phases 95 (Reddy et al. 1995; House & Dension, 2000). Sulphate may also influence the release of P from Fe oxide phases leading to the recycling of sediment P (Caraco et al. 1989). The release 96 of sediment P may be through the Equilibrium Phosphorus Concentration (EPC₀) model 97 (Froelich, 1988). These processes may contribute to increasing P concentrations in estuarine 98 waters and export to the oceans (Fox et al. 1986; Lebo and Sharp, 1992) where biological 99

uptake and recycling are intensive, especially if N is not limited (Correll, 1998). This can lead
to changes in the speciation of suspended sediment and particulate P which can be seasonally
influenced (Zwolsman, 1994).

103

104 This paper investigates the controls on P concentration and speciation within the inter-tidal mudflats of the tidal River Thames, UK, a major UK river which flows through London. 105 Recent work by Powers et al (2016) produced a history of P fluxes (Kt yr⁻¹) within the 106 Thames catchment and demonstrated that between 1940 and 1980, inputs of P into the 107 catchment in order of importance, were fertiliser P, food/feed export from farms, food waste 108 109 to landfill and P input from sewage to treatment works. These were found to greatly exceed 110 river export. However, since the late 1990's, and during the 2000's, gross annual exports 111 from the landscape pool (land & river) of the Thames basin have slightly exceeded inputs. 112 However, the results described by Powers et al. (2016) demonstrate how in the 113 Anthropocene, the P cycle within catchments is dominated by human inputs which greatly 114 exceed fluvial export and that substantial P is stored within components of the catchment. Whereas much work has been undertaken on the controls on P and improvements resulting 115 from P stripping in STW's of the upper Thames catchment (Neal et al. 2000; Neal et al. 2010; 116 117 Neal et al. 2006), this work examines the tidal section that flows through central London to 118 the North Sea, and where significant P is released from some of the largest STW's in Europe. As the tidal mudflat sediments are formed through the sedimentation of suspended sediment, 119

120 they present an archive of the environmental effects on suspended sediment P interactions

- $_{121}$ and secondly on those processes when sediment P is in temporary storage within the mudflat.
- 122 By combining data on the concentration and speciation of P with knowledge of the sediment
- transport system, a broad conceptual understanding of P cycling can be made for the tidal

124 Thames.

125 2. Materials and Methods

126 2.1 Study area

The river Thames is the UK's longest river with a length of 345 km, a catchment area of 128 12935 km² and with an average discharge of 65.8 m³ s⁻¹ (Marsh and Hannaford, 2008). The 129 rural upper catchment consists largely of agricultural land on limestone and chalk geology, 130 flowing through a succession of large towns / small cities, before flowing through the centre 131 of the city of London and out to the North Sea (Figure 1). The fore-shore mud flat sediments 132 examined in this work are from the tidal section of the Thames which consists of a 120 km 133 section from Teddington Lock in west London to the Essex coastline.

135	To understand the dynamics of P storage within these fore-shore sediments, understanding of
136	(i) the origin of the sediments, (ii) their movement and (iii) inputs of P into the system is
137	required. There are two main sources of sediment within the tidal river, these (i) originating
138	from the catchment upstream of Teddington, and (ii) the tidal remobilisation of sediment in
139	the estuary and transport upstream. Littlewood and Crossman (2003) provide an indication as
140	to the extent that particles may travel. They suggest that if a particle started at Southend
141	(Core 46; Fig 1) it may move upstream 12 km on a large spring tide and 17 km if the particle
142	started at Greenwich (Core 14; Fig 1). However, suspended sediment would only drop out to
143	form the mud-flats when current velocity and particle size are appropriate. Deposited
144	sediment may erode when the critical threshold for re-mobilization is next achieved. The
145	movement of sediment in suspension will be greatest on spring tides and least on neap tides,

due to the greater forces produced by the spring tide. In addition to the suspended load, a great deal of sediment is transported upstream as near bed load where high concentrations and fluxes can occur. It would appear that this process is driven by salinity gradients and freshwater flow. Thus, in periods of low fresh water flow (April to September) the average

150	salinity in the Blackwall Point and Lower Gravesend reach increases as it does not undergo
151	as much dilution from the fluvial flow. This seasonal salinity change results in sediment
152	being moved upstream and deposition occurring, where the salinity and flow velocity are
153	suitable. This is a slow process and takes several months. In autumn, the increased fresh
154	water flow may re-mobilise cohesive bed sediments. Results suggest that most of this
155	sediment moves at very high concentration in the deepest parts of the channel, with only a
156	small part of the sediment rising into suspension. However, within a few days this downward
157	channel movement of sediment can reverse the whole of the summer period upstream
158	transport.
159	We have divided the tidal Thames into four zones based on suspended sediment
160	concentrations by Littlewood and Crossman (2003). Zone 1 stretches from Teddington Lock
161	to Lower Pool (Cores 1-12) and in this stretch the suspended sediment concentrations are
162	generally low with concentrations at Putney (17 km from Teddington of 40-120 mg L ⁻¹ and at
163	Vauxhall Bridge (27 km from Teddington Lock) of 60-140 mg L ⁻¹ . Within this zone there is
164	little deposition of sediment on the banks of the river with much of the sediment passing
165	through. Zone 2 (Cores 13-27) covers the distance between Lower Pool to Erith Reach (24
166	km) and includes the turbidity maximum around Gallions, Barking and Halfway reaches
167	(Cores 17-27). Traditionally these are known as the 'mud reaches' as this is the limit of saline
168	intrusion which causes flocculation and deposition of the sediment. The position of the
169	turbidity maximum is liable to fluctuate with tidal range, sea level changes and the seasonal
170	change in freshwater and saline tidal flow. The movement of this saline front has a

171	fundamental effect on the deposition of sediment. During winter, when river flow is high, the
172	saline water front is pushed back and this causes the sediment to be flushed out of the 'Mud
173	Reaches' and stored in the Gravesend Reach area of Zone 3 (Cores 30-32). In the summer

when river flow is lower the saline front moves back upstream, which again starts the process 174

175	of flocculation and deposition of the sediments. The suspended sediment concentrations are
176	highest in this zone with concentrations at Barking in the range 500-600 mg kg ⁻¹ . Zone 3
177	(Cores 28-33) occupies the distance from Erith to Lower Gravesend Reach (20 km) and
178	generally has moderately high suspended sediment concentrations with concentrations at
179	Tilbury between 200-400 mg L^{-1} . Zone 4 (Cores 34-47) is the area between Gravesend to
180	Sea Reach spans a distance of 27 km and connects the estuary to southern North Sea.
181	Combined with these general sediment dynamics are inputs of dissolved and particulate P. In
182	Zone 1, P inputs will be from the agriculture and STW's sited in the upstream catchment.
183	Within Zone 1 there are additional major inputs from the STW at Mogden. In Zone 2, there
184	are three major STW's including those at Becton, Crossness and Riverside, whilst in Zone 3
185	there is the Long Reach STW. In addition, to P discharges from all these STW's sewage is
186	discharged into the Thames via overflow sewers during times of heavy rainfall.
187	
188	2.2 Sediment Sampling
189	Two sets of sediment were collected, (i) sediment cores (n=47) collected in non-sequential
190	order in November 2009, October 2010 and November 2011 from zones 1-4 and (ii) a further
191	23 surface grab samples (2-5cm deep), representing the most recently deposited sediments
192	and were collected using a stainless steel trowel from zones 1 and 2 in November 2011.
193	Sample positions of cores (C) and surface grab samples (G) are shown in Figures 1 and 2
194	respectively.
195	

196 Inter-tidal sampling sites were accessed by Port of London Authority Dory attached to the

- 197 vessel Driftwood II, using pre-determined GPS co-ordinates (Vane *et al.*, 2015). At each core
- site, clear polycarbonate tubes (140 cm length \times 6 cm I.D) fitted with a stainless steel basket
- 199 catcher at the base were manually driven into the exposed sediment and extracted to recover

200	the core material (Vane et al., 2011; Vane et al. 2007). Sediments were frozen at -18° C
201	within 3 h of exhumation and transported frozen in the dark from London to the BGS
202	laboratories to avoid post-collection chemical changes and physical movement. Upon receipt
203	each core was cut longitudinally in half and sliced into 10 cm intervals (Vane et al., 2013).
204	The resultant sediment samples were freeze-dried, disaggregated, sieved to pass a 2 mm
205	mesh. A subsample of the < 2mm fraction was ground to a fine powder using an agate ball-
206	mill (Beriro et al. 2014). Prepared Thames sediments were subsequently stored in the dark at
207	14°C in sealed polyethylene bags. All samples were thoroughly mixed to avoid
208	inhomogeneity caused by density settling during storage.
209	
210	2.3 Analytical Methods
211	Total element concentrations in the sediment cores were determined using XRFS

212 Spectrometer using the same analytical method, instrumentation and calibration package as 213 previously reported for mangrove sediments (Vane et al., 2009). TOC was determined using 214 a Europa Scientific Elemental Analyser, after samples were treated with 1M HCl, and washed 215 with deionised water to remove inorganic C, before being oven dried at 60°C (Lopes dos Santos and Vane, 2016). Estimates of poorly crystalline oxyhydroxides of Fe (FeOOH), Mn 216 (MnO_x) and Al (AlOOH) in sediment were determined using 0.2M ammonium oxalate and 217 218 0.125M oxalic acid extractions. Samples were shaken in darkness for 2 hours (McKeague & Day, 1966), centrifuged at 3500 rpm and filtered (0.45µm nylon syringe filters) before 219 analysis by ICP-AES. Using results from the oxalate extraction the Degree Phosphrous 220

221	Saturation (%	DPS) can	be estimated as	P _{Oxalate} /(Fe _{Oxalate})	+ Al _{Oxalate})*	*100.	Estimates	of	Tota	1
-----	---------------	----------	-----------------	--	----------------------------	-------	-----------	----	------	---

- 222 Organic Phosphorus were made by extracting samples using 0.25M NaOH and 0.05M EDTA
- for 16 hours at 20°C (Turner et al. 2003). After extraction sub-samples were analysed for (i)
- 224 'Inorganic P (molybdate reactive P)' (P_{Inorganic}) and (ii) total P with estimates of organic P

(Porganic) being the difference between the two measurements. PInorganic was measured by 225 226 molybdate blue immediately after extraction and Total P in the extracts was measured by 227 ICP-AES. Methodological constraints have been discussed in previous work (Worsfield et al., 2008). It is possible that the within P_{Inorganic} measurement some acid hydrolysable organic and 228 condensed P may be included through the molybdate blue analysis and within P_{Organic} 229 measurement some inorganic polyphosphates may be measured (Turner et al. 2003). Samples 230 231 were analysed in batches of 30, with two samples selected that were extracted and analysed in every batch. These were samples core 41 (20-30 cm) and core 35 (10-20 cm). For the PInorganic 232 measurement the nine replicates from core 41 gave a mean concentration of 448 mg kg⁻¹ \pm 233 SD = 16.36 (% CV = 3.64; n=9) and for core sample 35 a mean concentration of 805 mg kg⁻ 234 $^{1} \pm$ SD = 38.88 (% CV 4.83, n=9). For the ICP-AES measurement of Total P in NaOH 235 solutions, the core 41 sample gave a mean concentration of 495.6 mg kg⁻¹ \pm SD 23.1 (% CV 236 = 4.66 %; n=9) and core sample 35 gave a mean concentration of 878.2 mg kg⁻¹ \pm SD 17.28 237 238 (% CV = 1.97; n=9). In some samples $P_{\text{Inorganic}}$ was found to be equal or slightly greater than the ICP-AES measurement thereby returning a negative POrganic value. This is probably 239 associated with experimental (e.g. Worsfield et al, 2008) and analytical error associated with 240

each method. Therefore an 'uncertainty propagation' analysis was undertaken for samples,

using information obtained from the replicates samples and based on 95 % Confidence

243 Intervals to ascertain samples which had a robust and identifiable $P_{Organic}$ concentration.

Results suggested that those $P_{Organic}$ concentrations < 21 mg kg⁻¹ were not sufficiently robust

and were therefore not included within the dataset.

- 247 Scanning electron microscopy (SEM) was undertaken to characterise the sediments and
- 248 identify P containing mineral phases. Sub samples of sediment were mounted on stubs and
- were coated with a thin film of carbon approximately 25 nm thick using an EMITECH 960L

251	SEM, and an FEI Quanta 600 environmental SEM, under high vacuum (<1x10-4 Torr) and
252	variable vacuum (0.45 Torr water atmosphere) conditions respectively. Accelerating voltages
253	of 20kV were used in both. SEM photomicrographs were obtained under backscatter electron
254	imaging (BSEM) and secondary electron imaging (SE) conditions as 8 bit greyscale TIF
255	format digital images. Phase/mineral identification was aided by qualitative observation of
256	energy-dispersive X-ray spectra recorded simultaneously during SEM analysis, using Oxford
257	Instruments INCA energy-dispersive X-ray microanalysis (EDXA) systems. One core from
258	each of the 4 sediment zones of the tidal Thames were selected and three depths analysed,
259	these being:
260	Zone 1 – Core TH29, 10-20 cm, 30-40 cm and 60-70cm
261	Zone 2 – Core THS3, 0-10 cm, 30-40 cm and 50 -60 cm
262	Zone 3 – Core TH10, 10-20 cm, 40-50 cm and 70-80 cm
263	Zone 4 – Core TH2, depths 10-20 cm, 30-40 cm 50 – 60 cm
264	
265	3. Results and Discussion
266	3.1 Sediment characteristics
267	It is important to assess the geochemical characteristics of the sediment prior to examining
268	changes in the P concentrations and speciation. This is to ensure that a change of sediment
269	source is not responsible for the changes in P properties. For example, it has been suggested
270	that the Thames estuary may receive sediment from sources such as the North Norfolk coast

evaporation-coating unit. Analyses were performed using a LEO 435VP variable pressure

271	where extensive cliff erosion occurs. Total mean concentrations of Al and Si for each core
272	were determined from the 10 cm sections, and used as proxies of alumina-silicate minerals,
273	so that geochemical relationships of the sediment between the inner and outer estuary zones
274	could be examined. Results showed that there was reasonable consistency in Si and Al

275	concentrations, along the length of the Thames estuary (Figures 3a & 3b). There was possibly
276	greater variation in Zone 1 cores closer to Teddington Lock, possibly because of less tidal
277	mixing further up the river. A further test to assess changes in sediment source was to
278	examine the relationship between Al and Rb, with the hypothesis that clay minerals derived
279	from different sources would have different Al:Rb ratios (assuming that a significant
280	proportion of the Al present was as clay minerals and that Rb is largely present in the clay
281	minerals). Figure 3 shows a very strong correlation ($r^2 = 0.95$) between Al and Rb for the
282	whole dataset, suggesting that the sediment is likely from a similar source or is well mixed
283	within the estuary before sedimentation. Similarly strong correlations were found between
284	other clay components including K v Ti (R ² =0.92), Ti v Al (R ² =0.97) and Ti v Mg (R ²
285	=0.89). There appeared to be no definite trend in sediment depth throughout the estuary
286	although depths varied from 10 cm to $>1m$ (Figure 4a).

287

288 **3.2 Total Phosphorus in foreshore sediments**

Results from the sediment geochemical analysis suggest that (i) the sediment collected from the fore-shore appeared to be from one source (or thoroughly mixed) and that there was not a distinctive fining of the sediment towards the estuary mouth. Both of these factors could influence P_{Total} distribution, but based on these results it does not appear that they have a large influence. Using the sediment zone classification of Littlewood and Crossman (2003) and described in the Material and Methods, mean P_{Total} concentration in each core was determined by averaging the 10 cm depth increments. These were then plotted against their

- distance from Teddington Lock (Figure 4c). It is evident that mean P_{Total} concentrations were
- highest in Zones 1 and 2 with a large fall in concentrations in Zone 3 and 4. When compared
- to the salinity concentrations transect (Figure 4b) taken from the data of Pope and Langston

(2011), it can be seen that the decrease in P_{Total} concentrations in Zones 3 & 4, occurs when
there is an increase in salinity above ~6 ppt.

301	Figure 5 shows the variation of P_{Total} concentrations within the 0-10 cm sections from cores
302	from each of the 4 sediment zones using Box and Whisker plots, along with the grab samples
303	taken from Zones 1 and 2. The greatest variation and range of P_{Total} concentrations were
304	found in Zone 1, possibly because there is less mixing of sediment towards the tidal limit
305	(Teddington Lock). For Zone 2, the range of P_{Total} concentrations was smaller than in Zone 1
306	and the P_{Total} concentrations between the $25^{\text{th}}-75^{\text{th}}$ percentiles showed less variation than in
307	Zone 1. For Zones 3 and 4, it was evident that the concentration ranges of P were greatly
308	reduced compared to Zones 1 and 2, and with less variation, particularly between the 25^{th} and
309	75^{th} percentiles. Median values for the grab samples from Zone 1 and 2 were higher than the
310	mean P_{Total} concentrations in the cores taken from their respective zones, but the distribution
311	of concentrations were broadly similar. Thus the grab samples did not demonstrate that the
312	$P_{\mbox{\scriptsize Total}}$ concentrations in the most recently deposited sediments were significantly different
313	from the core sample concentrations. The reasonably consistent concentrations of P_{Total}
314	within the 25 th to 75 th percentiles ranges in the cores from each zone probably reflects the (i)
315	thorough sediment mixing due to the strong? tidal cycle (see Section 2.1), storm events and
316	anthropogenic physical disturbance (e.g. maintenance dredging) and (ii) the controls that
317	water properties (e.g. salinity) may produce.
318	

319 The relationships between P_{Total} and the elements it is likely to form mineral phases with or

320 act as a binding surface with were examined. Initial exploration of the data (n=279 samples)

- $_{\rm 321}$ $\,$ identified a series of outliers which prevented models involving $P_{\rm Total}$ to parameterise
- 322 effectively. These outliers were removed from the dataset, prior to further P_{Total} data analysis.
- 323 Core 29 (Rainham) values were removed as this core came from was a salt marsh sample,

324	rather than a foreshore mudflat sediment, and because its environmental setting led it to have
325	very different geochemical properties. There were also a series of samples (n=20) where
326	Fe_{Total} concentrations were > 60 000 mg kg ⁻¹ . The values removed came largely from core 32
327	(Shorne, n=5), core 24 (Crossness, n=4), core 33 (Cliffe, n=2), core 25 (Dagenham Ford Pier,
328	n=3), and core 28 (Dartford, n=3) with individual values coming from 2 (Chiswick Bridge),
329	13 (Deptford Creek) and 10 (Vauxhall Bridge). These samples also had elevated
330	concentrations of trace metals, compared to the remaining dataset. For Cores 24, 25, 32 and
331	33 these included V and Co suggesting that the higher concentrations of Fe in these samples
332	may have been derived from metallurgical industries.

333	

334	After removing these 20 samples, reasonably strong relationships between P and TOC
335	(r=0.77) and Mn (r=0.76) with P_{Total} were found (Figure 6). Generally, poor relationships
336	were found between $Fe_{Total},\ Al_{Total}$ and Ca_{Total} and $P_{Total}.$ To further understand the
337	geochemical associations of P, SEM analysis of selected cores samples (Section 2.3) were
338	undertaken. All samples analysed contained mainly silicates, with some Ca carbonates
339	(mostly as coccoliths) and iron-titanium phases (ilmenite) being present. However, the
340	mineral phase which was ubiquitous was pyrite (FeS ₂) suggesting the presence of reducing
341	conditions throughout the cores examined from the four different zones (Figure 7). Minerals
342	containing P were rare in all the samples examined. However, occasional P containing
343	minerals were found. For example, in core 2 (Zone 1) at a depth of 30-40 cm, a small
344	fragment of apatite included within a mica (biotite) sheet was found. In core 26 (Zone 2), at a

345	depth of 0-10 cm there was an altered Fe mineral, with a small concentration of P present,
346	along with some infrequent apatite. At a depth 50-60 cm a rare-earth phosphate-mineral was
347	found (aluminium-strontium-phosphate + rare earths). At a depth of 40-50 cm, a particle of
348	amorphous Fe oxide containing very small concentrations of Mn and P was found. Possible

vivianite (dominant detectable elements are Fe, P and O, with lesser Mn) was recognised in 349 core 36 (Zone 4), at depths of 10-20 cm and 30-40 cm. 350 A regression model to determine the key variables that may explain the concentration of P_{Total} 351 in the dataset (n=224) was parameterised. The best fit model for predicting P_{Total} had an 352 adjusted R^2 of 0.80 and is presented in Table 1, with the observed v predicted values shown 353 in Figure 8. The three significant (P < 0.001) co-variables of the model were Mn_{Total}, TOC and 354 355 salinity. It is likely that Mn_{Total} was significant as it is likely linked to the Fe(III) oxyhydroxides that are involved in P adsorption and the positive relationship with TOC was 356

likely because much of the P is released from STW's or sewerage overflow which also are

likely to release organic matter. Salinity is included because of the role increasing anion (e.g.

sulphate) concentrations may have on desorption of P species from the sediment (Caraco etal. 1989).

361

362 **3.3 Oxalate Extractable P and non-crystalline oxides**

All core samples and grab samples were analysed for $P_{Oxalate}$, an estimate of the P associated with the non-crystalline oxides of $Al_{Oxalate}$, $Fe_{Oxalate}$ and $Mn_{Oxalate}$, either being surface bound or fixed within the poorly crystalline oxide structure. Measurements are also likely to include P associated with the release of organic species, originally bound to the non-crystalline oxide phases (Basile-Doelsch et al., 2015). The relationships between Total Fe, Al and Mn and their oxalate extractable oxide phases (Figure 9) show that for Fe_{Oxalate} and Al_{Oxalate} the effects of salinity are apparent; there being a higher proportion of Fe_{Oxalate} and Al_{Oxalate} in sediment

- $_{370}$ Zones 1 and 2, than in Zones 3 and 4 where salinity is increasing, whilst the range of Fe_{Total}
- and Al_{Total} are broadly similar. For $Fe_{Oxalate}$ this may suggest that the increasing sulphate
- 372 concentrations associated with salinity is producing FeS₂ (Caraco et al., 1989). For Mn_{Oxalate},
- a linear relationship ($R^2 = 0.87$) was found with Mn_{Total} for the entire dataset.

375 Data showed that $P_{Oxalate}$ concentrations were broadly similar in pattern to P_{Total} with 376 distance from Teddington Lock. Figure 10 shows the relationship between $P_{Total} v P_{Oxalate}$ and 377 demonstrates that for many samples the oxalate extraction removes a significant proportion of 378 P_{Total} , with an overall relationship being:

379
$$P_{Oxalate} = 0.9765^* P_{Total} - 347.2; \qquad R^2 = 0.88 \qquad eqn. \ 1$$

It was found that P_{Oxalate} slightly exceeded P_{Total} in a small number of samples with the 380 highest P_{Total} concentrations, these being from Zone 2 where the major STW's are sited. This 381 382 is likely to occur when P_{Oxalate} accounts for most of the P present along with any analytical 383 error associated with ICP-AES measurements. The Poxalate:PTotal ratios found in the different sediment zones of the Thames was explored. A higher proportion of P was oxalate 384 extractable in Zones 1 and 2 than in Zones 3 and 4 (Figure 11). Median POxalate: PTotal in zones 385 386 1 and 2 was ~0.8 whilst in Zones 3 and 4 median values ~0.6. In addition, it was also obvious that those samples in Zones 3 and 4 generally had a more constrained distribution around the 387 median value than samples in Zones 1 and 2. The suggestion from these results is that 388 samples from Zones 1 and 2 have a lot of surface adsorbed P, possibly as a result of 389 discharges from the STW's present but in Zones 3 and 4, this has been desorbed because of 390 the increase in salinity. Correlations between P_{Oxalate} and the non-crystalline oxides were 391 assessed for the whole dataset (Figure 12). There were strong correlations between Fe_{Oxalate} 392 (r=0.89) and Mn_{Oxalate} (r=0.79) and P_{Oxalate}, with a lesser correlation with Al_{Oxalate}. In 393

394 ³⁹⁵

- ad dition, $Mn_{Oxalate}$ and $Fe_{Oxalate}$ showed a strong correlation (r=0.80).
- 396 The degree of phosphorous saturation (DPS) was examined to assess whether the decrease in
- the proportion of non-crystalline oxide surfaces found in Zones 3 and 4 are likely to be a
- 398 constraint on phosphate sorption. In Figure 13, box and whisker plots show the % DSP for

core samples in each zone and also from the grab samples taken from Zones 1 and 2. There
was generally a lower % DPS in Zones 3 and 4 than in Zones 1 and 2. Median values of %
DPS in Zones 1 and 2 were between 20 -30 %, whilst for Zones 3 and 4 they were between
10-15 %, suggesting that there is potential for further sorption in all zones.

403

404	A model to predict the concentration of P_{Oxalate} was parameterised and results can be seen in
405	Table 2 and Figure 14. In parameterising the model, the possible effects of salinity were
406	considered as it is likely responsible for both desorption of phosphate species and also the
407	lower proportion of non-crystalline oxides of Fe an Al that phosphates may bind too.
408	Analysis of data showed weak negative correlations between salinity and $Fe_{Oxalate}$ (r=-0.35)
409	and $Al_{Oxalate}$ (r=-0.51), suggesting that some interactions were present. Therefore, whilst a
410	predictive model can be parametrised this small cross-correlation means that a comparison of
411	the coefficients and their relative importance cannot be undertaken. Two models were
412	parameterised, firstly one using the three oxalate oxide phases (Fe, Mn, Al) which had an
413	adjusted R^2 of 0.75 and a second, where salinity was included with an R^2 of 0.80.
414	Undertaking an ANOVA to compare the two model outputs it was found that the second
415	model with salinity included was significantly ($P < 0.001$) improved and is the one presented
416	in Table 2 and Figure 14.
417	

418 3.4 Estimates of NaOH extractable inorganic and organic P

420	or non-crystalline oxides, improved estimates of inorganic and organic	species were
421	examined using the P_{NaOH} extraction. Concentrations of $\text{NaOH}_{\text{Total}}$ were relate	d to P_{Total} and
422	P _{Oxalate} through the following equations:	
423	Total NaOH P = $0.7208 * P_{Total}$; R ² =0.91	eqn. 2

424	Total NaOH P = $0.8060 * P_{\text{Oxalate}}; R^2 = 0.94$	eqn. 3
425	The equations demonstrate that the combined $P_{\text{Inorganic}}$ and P_{Organic} fractions extract	ted using
426	NaOH represent significant proportions of both the P_{Total} and P_{Oxalate} pools. A gene	ral pattern
427	existed for the NaOH extractable Inorganic and Organic P pools in that when P_{Inor}	organic WaS
428	typically < 1000 mg kg ⁻¹ , the concentrations of P _{Organic} were generally also low	or below
429	analytical detection. Thereafter as $P_{\text{Inorganic}}$ increases there was a concomitant in	ncrease in
430	P_{Organic} concentrations which often exceed the $P_{\text{Inorganic}}$, concentration. Figure 15 sh	lows how
431	concentrations of both $P_{\text{Inorganic}}$ and P_{Organic} vary with distance from Teddington Lock	x, at three
432	depth intervals; these being 0-10 cm, 30-40 cm and 50-60 cm. Missing values inc	dicate that
433	sediment was not present at that depth. Two trends can be seen in the data. Firstly, i	n zones 1
434	and 2, concentrations of P_{Organic} were generally a higher proportion of the P extra	acted with
435	NaOH than in zones 3 and 4 at all three depths, with the exception of TH7 which	h was the
436	core taken on the salt marsh. The second trend shows that a substantial concer	ntration of
437	P_{Organic} in zones 1 and 2 remains with increasing depth. In a similar manner to τ	the P _{Oxalate}
438	model, two models were parameterised, one without salinity and one where sal	inity was
439	included, because of the possible effects of salinity on the oxide surfaces and desor	rption of P.
440	Model one predicted $P_{\text{Inorganic}}$ using Mn_{Oxalate} and Fe_{\text{Oxalate}} and had a R^2 of 0.69. The	e inclusion
441	of salinity to the above model increased the adjusted R^2 to 0.76 and is reported in Ta	ble 3 and
442	Figure 16. An ANOVA comparing the two models showed that the second r	nodel was

- significantly (P<0.001) improved by including salinity.

446	The inter-tidal mud flats of the River Thames represent a temporary storage component for
447	sediment associated P within the estuarine system, but one which is vulnerable to
448	remobilisation, with the potential for the release of P to estuarine waters. Thus evidence from

449	the spatial distribution and speciation of P in the intertidal mud flat sediments of the River
450	Thames combined with existing information regarding salinity and sediment movement can
451	be combined to provide a conceptual understanding of sediment-P release to water and
452	storage (Figure 17). The fore-shore sediments are formed from deposited suspended sediment
453	and therefore concentrations and speciation of deposited sediment-P are likely to reflect (i)
454	the interactions between suspended sediment and the estuarine / river aquatic environment at
455	the point of deposition and (ii) in-situ processes once it has settled. Results for the Thames
456	suggest that the P concentrations and speciation in the intertidal muds can be considered in
457	the context of the four suspended sediment zones suggested by Littlewood and Crossman
458	(2003). These sections all differ in P inputs and environmental gradients (salinity, SPM).
459	Zones 1 & 2 have large inputs of P from 4 major London STW's (Mogden, Abbey Mills
460	CSO, Beckton and Crossness) combined with P originating from the catchment above
461	Teddington lock, whereas Zones 3 & 4 represent an increasingly saline environment. Zone 2
462	generally had the most samples with high concentrations of P in the 25-75 th percentile range,
463	probably as a result of the STW inputs. Previous work on these core samples have suggested
464	that the highest concentrations of the biomarker crenarchaeol, an indicator of ammonia-
465	oxidising Thaumarchaeota were found in this zone (Lopes dos Santos & Vane, 2016). This
466	Archaea has been found in STW effluent (Kim et al. 2007). Thereafter the two dominant
467	factors to be considered when accounting for the change in sediment P distribution and
468	speciation through the tidal river system are (i) sediment source and transport and (ii) salinity.

470 With respect to sediment source, several authors (e.g. Inglis & Allen, 1957; WPRL, 1964)

471	who undertook sediment budgets have suggested that inputs from the wider coastline,
472	particularly from the decay of cliffs north of the Thames estuary, were needed to balance
473	sediment budgets for the Thames estuary. However, recent work by Baugh et al. (2013), who

474	undertook a fine sediment budget for the Thames, suggests that no large marine source of
475	sediment is required to balance the sediment budget. This concurs with the initial assessment
476	of sediment geochemical relationships undertaken in this work. Correlations (r=>0.95) were
477	found for the whole dataset for the major elements K, Rb, Mg, Al, and Ti, which typically
478	make up the clay fraction. In addition the statistical relationships for these elements were not
479	found to be different when zones 1 and 2 and zones 3 and 4 were compared, indicating that
480	the geochemistry of the sediment samples largely represent a single source of well mixed
481	sediment present throughout the estuary. One aspect of estuarine sediment movement that
482	may enhance sediment mixing is the sediment shuttle that operates between zones 2, 3 and 4
483	and which was identified by Ingliss & Allen (1957) who used ⁴⁶ Sc to track the movement of
484	sediment in the Thames. This mixing of sediment is likely one reason for the relatively
485	consistent P_{Total} concentrations found in each sediment zone, particularly between the 25^{th}
486	and 75 th percentiles. Having ascertained that a change in sediment source is not the likely
487	cause for changes in sediment P concentrations, other processes can be examined. Two key
488	mechanisms can be considered, these being the interactions between (i) salinity and
489	suspended sediment P before deposition and (ii) P interactions with salinity within the
490	deposited sediment.
491	
492	Previous work (e.g. Upchurch et al. 1974; Fox et al. 1986; Jordan et al. 2008; Zhang and
493	Huang, 2011) suggests that salinity is a key control in the distribution and speciation of P
494	within a river-estuary system, especially within the turbidity maximum and as suspended

sediment passes from fresh to saline water. Desorption of surface adsorbed sediment P has

- 496 been found as salinity increases (Upchurch et al. 1974; Deborde et al. 2007; Lebo, 1991),
- 497 largely through increased ionic strength and competition from other anions (e.g. OH, F,
- 498 SO_4^- and $B(OH)_4^-$) for sorption sites (Froelich, 1988). For example, Deborde et al. (2007)
| 499 | found a decrease in both organic and easily exchangeable inorganic P in suspended sediment |
|--|--|
| 500 | along a salinity gradient in the Gironde estuary in France. Salinity also influences sediment P |
| 501 | concentration and speciation within the mud flat deposits because of the role sulphide plays |
| 502 | in releasing phosphate. This is via the dissolution of Fe-P complexes and the formation of |
| 503 | FeS ₂ minerals (Krom and Berner, 1980; Caraco et al. 1989; Jensen et al. 1995). In addition, |
| 504 | once deposited as mudflat sediment P sorption or desorption will be dependent on the |
| 505 | Equilibrium Phosphate Concentration (EPC $_0$). The EPC $_0$ determines the potential of P |
| 506 | desorption or adsorption of deposited sediment in relation to the concentration of P in the |
| 507 | river water. Zhang and Huang, (2011) demonstrated that only minor differences were found |
| 508 | in EPC values with salinities varying between 2-9 ppt. However EPC increased thereafter as |
| 500 | solipity increased |
| 509 | samily increased. |
| 509 | samily increased. |
| 510
511 | Within the Thames estuary salinity had the greatest influence on the interactions between |
| 510
511
512 | Within the Thames estuary salinity had the greatest influence on the interactions between sediment-P and its environment especially as the % DPS demonstrated sufficient oxide |
| 510
511
512
513 | Within the Thames estuary salinity had the greatest influence on the interactions between sediment-P and its environment especially as the % DPS demonstrated sufficient oxide surfaces for P sorption, even in zones 3 and 4 where there was a lower proportion of oxide |
| 509
510
511
512
513
514 | Within the Thames estuary salinity had the greatest influence on the interactions between
sediment-P and its environment especially as the % DPS demonstrated sufficient oxide
surfaces for P sorption, even in zones 3 and 4 where there was a lower proportion of oxide
surfaces. Evidence of the salinity gradient on P desorption was found to be significant within |
| 509
510
511
512
513
514
515 | Within the Thames estuary salinity had the greatest influence on the interactions between sediment-P and its environment especially as the % DPS demonstrated sufficient oxide surfaces for P sorption, even in zones 3 and 4 where there was a lower proportion of oxide surfaces. Evidence of the salinity gradient on P desorption was found to be significant within the models predicting P_{Total} , and $P_{Oxalate}$, and $P_{Inorganic}$. In particular, as salinity increases to 6 |
| 509
510
511
512
513
514
515
516 | Within the Thames estuary salinity had the greatest influence on the interactions between sediment-P and its environment especially as the % DPS demonstrated sufficient oxide surfaces for P sorption, even in zones 3 and 4 where there was a lower proportion of oxide surfaces. Evidence of the salinity gradient on P desorption was found to be significant within the models predicting P_{Total} , and $P_{Oxalate}$, and $P_{Inorganic}$. In particular, as salinity increases to 6 ppt at the beginning of Zone 3 major changes in the concentration and speciation of P in the |
| 509 510 511 512 513 514 515 516 517 | Within the Thames estuary salinity had the greatest influence on the interactions between
sediment-P and its environment especially as the % DPS demonstrated sufficient oxide
surfaces for P sorption, even in zones 3 and 4 where there was a lower proportion of oxide
surfaces. Evidence of the salinity gradient on P desorption was found to be significant within
the models predicting P_{Total} , and $P_{Oxalate}$, and $P_{Inorganic}$. In particular, as salinity increases to 6
ppt at the beginning of Zone 3 major changes in the concentration and speciation of P in the
Thames sediments occurs. A secondary influence on P desorption may also be produced by |
| 509 510 511 512 513 514 515 516 517 518 | Within the Thames estuary salinity had the greatest influence on the interactions between
sediment-P and its environment especially as the % DPS demonstrated sufficient oxide
surfaces for P sorption, even in zones 3 and 4 where there was a lower proportion of oxide
surfaces. Evidence of the salinity gradient on P desorption was found to be significant within
the models predicting P_{Total} , and $P_{Oxalate}$, and $P_{Inorganic}$. In particular, as salinity increases to 6
ppt at the beginning of Zone 3 major changes in the concentration and speciation of P in the
Thames sediments occurs. A secondary influence on P desorption may also be produced by
the concentration of Suspended Particulate Matter (SPM), which also changes with salinity. |

520	desorption	occurs	changed	with	suspended	sediment	concentrations.	When	suspended
521	sediment co	oncentra	tions were	low (< 83 mg L ⁻¹	SS) desor	ption occurred in	n the sa	linity range
522	0-3 ppt wh	ilst with	higher s	uspenc	led sedimen	t concentra	ations (when = o	or > 50	0 mg L ⁻¹)

desorption occurred 0-15 ppt. Thus the suggestion is that at higher SPM concentrations,
desorption of P may occur at a higher salinity.

525	Examining the interactions between salinity and SPM with respect to the Thames mudflat
526	sediments, conditions for P desorption from the sediment can be estimated (Figure 17). For
527	the Thames, Uncles and Mitchell (2011) suggest an average surface salinity in the Estuarine
528	Turbidity Maximum (ETM) of ~3 ppt, with its average position being between the Millenium
529	Dome and Woolwich Reach (between Cores 15 and 14; Zone 2). Various reports have been
530	published for suspended sediment concentrations in the ETM of the Thames (e.g. Uncles and
531	Mitchell, 2011). However, Baugh & Littlewood (2005) suggested tidally and width averaged
532	ETM SPM concentrations of approx. 600 and 150 mg L^{-1} at spring and Neap tides
533	respectively. After the turbidity maximum, salinity rises to 4 ppt in Zone 2. However, P
534	desorption does not appear to occur in Zone 2, Thus the SPM concentrations in Zone 2 may
535	be sufficient to reduce P desorption as suggested by Deborde et al. (2007), even though the
536	salinity has increased beyond the 3 ppt suggested for water with low SPM concentrations. In
537	the Thames, P desorption from sediment appears to occur at the interface between Zones 2
538	and 3 (Cores 27 and 28). Reported environmental conditions where this occurs based on data
539	from Uncles and Mitchell (2011) and Pope and Langston (2011) are a surface water SPM
540	decline to less than 50 mg L^{-1} and a salinity increase from 4 - 6 ppt. These figures are a
541	reasonable approximation of those given by Deborde et al. (2007), but demonstrate how the
542	interaction between SPM concentrations and salinity may determine conditions for P
543	desorption. Importantly, Deborde (2007) also suggested that P desorption was irrespective of

544 pre-existing P concentrations in saline waters. It is likely that desorption of P from the

545	Thames SPM occurs in waters with mean annual P concentrations that far exceed the Water
546	Framework Directive standard (< 120 ug L^{-1}) required for Good Ecological Status in fresh

547 waters (lowland, high alkalinity) (Defra, 2014). In summer and autumn, seasonal mean

548	concentrations of 1500 and 1800 μ g L ⁻¹ have been reported in the Thames Tideway (Thames
549	Water Utilities Ltd, 2011). In addition, the Cross Ness STW, one of the largest in Europe
550	discharges into the Thames only 5 km upstream of Zone 3. Data extracted from the EA
551	WIMS (<u>http://environment.data.gov.uk/water-quality/view/download</u>) database for 2015
552	provide measurements of orthophosphate concentrations from Hammersmith Bridge (Core 4)
553	to the ocean. Data suggests the mean value for 2015 (n=6) is ~1 mg L^{-1} for Zones 1 and 2,
554	with a drop in orthophosphate to 0.5 mg $L^{\text{-}1}$ by the end of Zone 3 and a concentration of <0.1
555	mg L^{-1} in Zone 4. Thus the suggestion is that P desorption occurs in waters with P
556	concentrations of between $0.5 - 1 \text{ mg L}^{-1}$.
557	

558 The salinity gradient also appeared to influence P speciation. This was demonstrated by both the P_{Oxalate} and P_{NaOH} results. Results demonstrated that although approximately 70 % of the 559 560 P_{Total} was held as P_{NaOH} extractable species throughout the tidal Thames (Equation 2), the proportion of inorganic and organic species appeared to change with increasing distance from 561 562 Teddington Lock. In Zones 1 and 2, a greater proportion of organic P was generally found compared to samples from Zones 3 and 4, where P appeared to be predominantly inorganic 563 MRP. Organic P is likely to be surface adsorbed, but binds less strongly than inorganic MRP, 564 565 leading to its likely preferential desorption in saline waters (Gardolinski et al., 2004; 566 Ruttenberg & Sulak, 2011). The source of much of this POrganic is likely to be outputs from the STW's in Zones 1 and 2. However, evidence from the different depths reported (Figure 567 568 13) suggest that organic P remained a significant proportion of NaOH extractable P, even at The presence of $P_0 \rightarrow at$

- suggests that it has not been utilised by bacteria. In freshwater lakes Reitzel et al. (2007)
- 571 found organic P species including orthophosphate monoesters and orthophosphate diesters
- including Teichoic acid and DNA-P to sediment depths of 40 cm, and dated to ~100 yrs old.

573	However, without further speciation of the organic P fraction using techniques such as ${}^{31}P$
574	NMR, it is not possible to speculate further on these sources and processes.
575	Examination of the mineral phases using SEM analysis demonstrated the relative paucity of P
576	containing mineral phases in each of the 4 zones, but particularly in zones 3 and 4. There was
577	a general absence of identifiable Fe-Mn-P oxide minerals that have been identified in
578	freshwater river systems (Tye et al. 2016), possibly suggesting that the absence of plant roots
579	prevents the distribution of oxygen required within the sediment to create large mineral
580	surfaces for P sorption (Christensen et al. 1997). In addition, no definite identification of
581	Vivianite minerals were found, which are typical of reduced sediments in freshwater and act
582	as a sink for P within the sediment. However, the ubiquitous presence of \mbox{FeS}_2 phases,
583	suggest that Fe is precipitating as FeS_2 minerals in preference to Vivianite in this saline
584	system (Caraco et al. 1980).
585	
586	Modelling of P species demonstrates that the oxides of Fe, Mn and Al were important for
587	sorption, and these probably exist as very fine oxides phases, as larger particles were
588	generally not detected using SEM. For P_{Total} the best fit model identified Mn_{Total} and organic
589	C as being significant predictors. This is likely because the $\ensuremath{\text{Fe}_{Total}}$ pool will include all the
590	FeS ₂ , along with various Fe(II) oxide minerals that have low affinities for P. Similarly, the
591	Al _{Total} will include that Al associated with clay. Both Tye et al. (2016) and Bortleston (1974)
592	found that when large datasets of sediment P were analysed, Mn _{Total} becomes a significant
593	predictor in models, despite MnOx generally having a much lower concentration as compared

594	to FeO _x . This therefore is a limitation on the contribution that MnO_x can make to the binding
595	of P (Bortleston, 1974; Christensen et al., 1997). However, for the P _{Oxalate} model all the
596	oxalate extractable phases measured (Fe $_{Oxalate}$, Al $_{Oxalate}$ and Mn $_{Oxalate}$) were significant
597	predictors in the model. In addition, both Mn _{Oxalate} and Fe _{Oxalate} were highly correlated and

598	were both significant in predicting $NaOH_{Inorganic}$. Whilst $Fe_{Oxalate}$ and $Al_{Oxalate}$ are recognised
599	as surfaces to which P sorbs, the role of $Mn_{Oxalate}$ is less clear as despite its large surface area,
600	its surface chemistry (negative surface charge at near neutral pH; Kawashima et al. 1986) is
601	generally considered less suitable for P sorption than that of FeO _x . However Yao and Millero
602	(1996) found MnOx to be an important adsorbent of phosphate in seawater whilst Kawasima
603	et al. (1986) suggested that phosphate is sorbed by MnO_x via the presence of divalent cations
604	$(Ba^{2+}, Ca^{2+}, Sr^{2+}, Mg^{2+})$ or transition metals $(Mn^{2+}, Co^{2+}, Ni^{2+})$ in aquatic environments.
605	However the strong predictive power of MnO_x found when examined in large datasets is
606	despite the accepted knowledge that FeOOH is likely a far more effective P binding surface.
607	However, particularly in aerobic-anaerobic transition zones of sediments there may be
608	mechanisms that combine the two oxides in the fixation of P. One possibility is that in
609	aerobic-anaerobic transition environments, MnO_x plays a fundamental role in the process
610	through which Fe^{2+} precipitates to form FeOOH or the co-precipitation of Mn/Fe oxy-
611	hydroxides (MnO _x -FeOOH) on which P is later sorbed. This process has been identified in
612	particle analysis from the redox transition zones of ocean waters, where P adsorption forms
613	part of tight element cycling involving Mn-Fe-P (Dellwig et al., 2010). The mechanism
614	involves biogenically produced MnO_x (Tebo et al., 2004) oxidising Fe^{2+} allowing $Mn(IV)$
615	ions to be replaced by Fe(III) ions. Postma (1985) suggested that the Fe ³⁺ produced will most
616	likely precipitate as FeOOH on the surface of the MnO_x particle, followed by immediate
617	adsorption or co-precipitation of P. Thus the suggestion is that one of the reasons MnO_x is
618	identified as being a strong predictive variable in models is because of its link to the pool of
619	FeOOH that is sorbing P. Whilst the PInorganic was modelled throughout the tidal Thames, no

 $\label{eq:constraint} 620 \qquad \text{modelling or correlations were found for $P_{Organic.}$}$

622	One question this study has not been able to answer relates to how long and how much
623	sediment-P remains in temporary storage. Baugh et al. (2013) suggest that during the 20 th
624	century the Thames experienced both anthropogenic and natural change in the morphology of
625	the mudflats. In the upper estuary (landward of London Bridge) it is considered that the
626	mudflats have decreased in size due to the tidal channel becoming deeper and wider.
627	However seaward of Barking, the lower estuary has deepened and narrowed leading to a gain
628	in intertidal area. Thus the nature of these mudflats is liable to change over time, with P being
629	stored in different areas of the river as the mudflats develop. When eroded, the material may
630	then be re-deposited within the system. In particular, this is relevant to the deposits in Zones
631	1 and 2 because any remobilisation and transport downstream is likely to lead to the release
632	of P to the water column as salinity increases in Zones 3 and 4. It is difficult to estimate the
633	age of the samples taken from each individual mudflat because their position and hence
634	deposition environment within the estuary is unique. However, work undertaken looking at
635	the distribution of different pollutants may provide some insights into these questions. For
636	example, Vane et al. (2015) examined Hg through the same core samples as used in this study
637	and in many cores the Hg concentration peaks were found at depths > 30 cm. In their paper
638	they suggested that much of the Hg may have come from the oil and coal burning power
639	stations of London (e.g. Battersea) which closed more than ~40 years ago. Thus it is
640	considered that at least some of the core samples represent an integration of sediment-P
641	processes over many years.

643 **5. Conclusions**

The concentration and speciation of P associated with sediments from the foreshore or inter-

645 tidal mud flats of the tidal river Thames were examined. Results demonstrated that both

sediment concentration and speciation were largely determined by the position within the

647	salinity gradient. Whilst representing a temporary store for P, considerable amounts of
648	sediment associated P in zones 1 and 2 remained highly mobile, with the potential of being
649	desorbed if re-suspended and transported to more saline waters. This would lead to potential
650	increases in nutrient status in the outer estuary and contribute to biogeochemical processes.
651	Whilst the behaviour of the inorganic P largely reflects the current state of knowledge with
652	respect to sorption processes, further work exploring the speciation of the organic P species is
653	required, particularly related to the length of time that organic P is stored within mud flat
654	sediments and its utilisation with increasing sediment depth.
655	
656	Acknowledgements
657	The authors would like to thank Alex Mortley and the crew of Driftwood III at Port of
658	London Authority (PLA) for providing assistance to CHV in sediment collection. The authors
659	also thank L. Åkesson and all staff at the Environment Agency (Abbey Wood Office) for
660	providing freezers for temporary sample storage. The research was funded by the Land Soil
661	and Coast Directorate, British Geological Survey (BGS). Murray Lark provided advice on
662	model formulation and Simon Chenery on calculating the 'uncertainty propagation' analysis.
663	This paper is published with the permission of the Executive Director, BGS.
664	
665	6. References

- 666 670
- 667 671 672
- 668 673
- 669 674

675 Basile-Doelsch, I., Balesdent, J., Rose, J. 2015. Are interactions between organic compounds and nanoscale weathering minerals the key drivers of carbon storage in soils? Environmental Science and Technology, 49, 3997-3998.

Baugh, J., Feates, N., Littlewood, M., Spearman, J. 2013. The fine sediment regime of the Thames estuary – A clearer understanding. Ocean and Coastal management, 79, 10-19.

Beriro, D.J., Vane, C.H., Cave, M.R. and Nathanail, C.P. 2014. Effects of physical sample preparation on the concentrations of polycyclic aromatic hydrocarbons in gasworks contaminated soils. *Chemosphere* 111, 396-404.

- Bortleson, G.C. 1974. Phosphorus, iron and manganese distribution in sediment cores of sixWinconsin lakes. Limnol Oceanogr: 19, 794-801.
- Eyre, B., Balls, P. 1999. A comparative study on nutrient behaviour along the salinity gradient
 of tropical and temperate estuaries. Estuaries, 22(2A), 313-326.
- Caraco, N.F., Cole, J.J., Likens, G.E. 1989. Evidence for sulphate-controlled phosphorus
 release from sediments of aquatic systems. Nature, 341, 316-318.
- Christensen, K.K., Andersen, F.Ø., Jensen, H.S. 1997. Comparison of iron, manganese, and
 phosphorus retention in freshwater littoral sediment with growth of *Littorella uniflora* and
 benthic microalgae. Biogeochemistry, 38, 149-171.
- Correll, D.L. 1998. The role of phosphate in the eutrophication of receiving waters: A review.Journal of Environmental Quality, 27, 261-266.
- Coelho, J.P., Flindt, M.R., Jensen, H.S., Lillebø, A.I., Pardal, M.A. 2004. Phosphorus
 speciation and availability in intertidal sediments of a temperate estuary: relation to
 eutrophication and annual P-fluxes. Estuarine, coastal and shelf science, 61, 583-590.
- Davidson, K., Gowen, R.J., Harrison, P.J., Flemming, L.E., Hoagland, P., Moschonas, G.
 2014. Anthropogenic nutrients and harmful algae in coastal waters. Journal of Environmental
 Management, 146, 206-216.
- Deborde, J., Anschutz, P., Chaillou, G., Etchber, H., Commarieu, M-V., Lecroart, P., Abril,
 G. 2007. The dynamics of phosphorus in turbid systems: Example of the Gironde estuary
 (France). Limnology and Oceanography, 52, 862-872.
- DEFRA. 2014. Water Framework Directive implementation in England and Wales: new andupdated standards to protect the water environment.
- Dellwig, O., Leipe, T., März, C., Glockzin, M., Pollehne, F., Schnetger, B., Yakushev, EV.,
 Böttcher, M.E., Brumsack, H-J. 2010. A new particulate Mn-Fe-P shuttle at the redoxcline of
 anoxic basins. Geochim et Cosmochim Acta, 74: 7100-7115.
- Deloffre, J., Verney, R., Lafite, R., Lesueur, P., Lesourd, S., Cundy, A.B. 2007. Sedimentation
 on intertidal mudflats in the lower part of macrotidal estuaries: Sedimentation rhythms and
 their preservation. Marine Geology, 241, 19-32.
- EA 2014. Water for life and livelihoods A consultation on the draft update to the river basin
 management Plan: Part 2: River basin management planning overview and additional
 information. Environment Agency, Bristol, UK.
- 717

684

688

691

695

699

703

706

- 720 p.0001-0073 (22/12/2000)
- 721

EC 2000. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. Official Journal L 327,

- 722 EEC 1991. Council Directive 91/271/EEC concerning urban waste water treatment.
- 723

729

733

736

740

743

746

750

754

758

Fox, L.E, Sager, S.L., Wofsy, S.C. 1998. The chemical control of soluble phosphorus in the
 Amazon estuary. Geochimica et Cosmochimica Acta, 50, 783-794.

- Froelich, P.N. 1988 Kinetic control of dissolved phosphate in natural rivers and estuaries: Aprimer on the phosphate buffer mechanism. Limnoliogy and Oceanography, 33, 649-668.
- Gardolinkski, P.C.F.C., Worsfold, P.J., McKelvie, I.D. 2004. Seawater induced release and
 transformation of organic and inorganic phosphorus from river sediments. Water Research,
 38,688-692.
- House, W.A., Denison, F.H. 2000. Factors influencing the measurement of Equilibrium
 Phosphate Concentrations in river sediments. Water Res: 34, 1187-2000.
- House, W.A., Jickells, T.D., Edwards, A.C., Praska, K.E., Denison, F.H. 1998. Reactions of
 phosphorus with sediments in fresh and marine waters. Soil Use and Management, 14, 139146.
- House, W.A., Warwick, M.S. 1999. Interactions of phosphorus with sediments in the RiverSwale, Yorkshire, UK. Hydrol Process: 13, 1103-1115.
- Inglis, C.C., Allen, F.H. 1957. The regimen of the Thames Estuary as affected by currents,salinities and river flow. Proceedings of the Institution of Civil Engineers, 7, 827-878.
- Jensen, H.S., Mortensen, P.B., Andersen, F.Ø., Rusmussen E., Jensen A. 1995. Phosphorus
 cycling in a coastal marine sediment, Aarhus Bay, Denmark. Limnology and Oceanography,
 40(5), 908-917.
- Johnes, P.J., Foy, R., Butterfield, D., Haygarth, P.M. 2007. Land use scenarios for England and Wales: evaluation of management options to support 'good ecological status' in surface waters. Soil Use Manage: 23 (suppl. 1), 176-194.
- Jordan, T.E., Cornwell, J.C., Boynton, W.R., Anderson, J.T. 2008. Changes in phosphorus
 biogeochemistry along an estuarine salinity gradient: The iron conveyor belt. Limnology and
 Oceanography, 53, 172-184.
- Kawashima, M., Tainaka, Y., Hori, T., Koyama, M., Takamatsu, T. 1986. Phosphate adsorption onto hydrous manganese (IV) oxide in the presence of divalent cations. Water
 Res: 20(4), 471-475.
- Kim, J.H., Ludwig, W., Schouten, S., Kerherve, P., Herfort, L., Bonnin, J., Sinninghe Damsté,
 J.S. 2007. Impact of flood events on the transport of terrestrial organic matter to the ocean: a
 study of the Tet river (SW France) using the BIT index. Organic Geochemistry, 38, 15931606.
- 767

- Krom, M.D., Berner, R.A.1980. Adsorption of phosphate in anoxic marine sediments.
 Limnology and Oceanography, 25, 797-806.
- 770

Lebo, M.E. 1991. Particle-bound phosphorus along an urbanized coastal plian estuary, MarineChemistry, 34, 225-246.

773

776

779

783

786

789

793

798

802

Lebo, M.E., Sharp, J.H. 1992. Modelling Phosphorus cycling in a well-mixed coastal Plainestuary. Estuarine, Coastal and Shelf Science, 35, 235-252.

- Littlewood, M., Crossman, M. 2003. Planning for flood risk management in the ThamesEstuary. Technical Scoping Report. Environment Agency.
- Lopes dos Santos, R.A and Vane, C.H. 2016. Signatures of tetraether lipids reveal
 anthropogenic overprinting of natural organic matter in sediments of the Thames estuary,
 UK. Organic Geochemistry, 93, 68-73.
- Marsh, T.J., Hannaford, J. 2008. The 2007 summer floods in England and Wales A
 hydrological appraiosal. Centre for Ecology and Hydrology, UK.
- McKeague, J. A., Day, J. H. 1966. Dithionite and oxalate extractable Fe and Al as aids in
 differentiating various classes of soils. Canadian Journal of Soil Science, 1966, 46(1): 13-22.
- Mortimer, R.J.G., Krom, M.D., Watson, P.G., Frickers, P.E., Davey, J.T., Clifton, R.J. 1998.
 Sediment-water exchange of nutrients in the intertidal zone of the Humber estuary, UK.
 Marine Pollution Bulletin, 37, 261-279.
- Neal, C., Jarvie, H.P., Howarth, S.M., Whithead, P.G., Williams, R.J., Neal, M., Harrow, M.,
 Wickham, H. 2000. The water quality of the river Kennet: initial observations on a lowland
 chalk stream impacted by sewage inputs and phosphorus remediation. Science of the Total
 Environment, 251, 252, 477-4895.
- Neal, C., Neal, M., Leeks, J.L., Old, G., Hill, L., Wickham, H. 2006. Suspended sediment and
 particulate phosphorus in surface waters of the upper Thames Basin, UK. Journal of
 Hydrology, 330, 142-154.
- Neal, C., Jarvie, H.P., Williams, R., Love, A., Neal, M., Wickham, H., Harman, S., Armstrong,
 L. 2010. Declines in phosphorus concentration in the upper River Thames (UK): Links to
 sewage effluent clean-up and extended end-member mixing analysis. Science of the Total
 Environment, 408, 1315-1330.
- 807

Pope, N.D., Langston, W.J. 2011. Sources, distribution and temporal variability of trace
metals in the Thames Estuary. Hydrobiologia, 672, 49-68.

- Postma, D. 1985. Concentration of Mn and separation from Fe in sediments 1. Kinetics and 811 stoichiometry of the eaction between birnessite and dissolved Fe(ii) at 10°C. Geochim et 812 Cosmoschim Acta: 49, 1023-1033. 813 814 Powers, S.M., Bruulsema, T.W., Burt, T.P., Chan, N.I., Elser, J.J., Haygarth, P.M., Howden, 815 N.J.K., Jarvie, H.P., Lyu, Y, Peterson, H.M., Sharpley, A.N., Shen, J., Worrall F., Zhang, F. 816 2016. Long-term accumulation and transport of anthropogenic phosphorus in three river 817 basins. Nature Geoscience 9, 353-356. 818 819 820 Reddy, K.R., Diaz, O.A., Scinto, .L.J, Agani, M. 1995. Phosphorus dynamics in selected 821 wetlands and streams of the lake Okeechobee Basin. Ecol Eng: 5, 183-207. 822 823 824 Reitzel, K., Ahlgren, J., DeBrabandere, H., Waldebäck, M., Gogoll, A., Tranvik, L., Rydin, E. 2007. Degradation rates of organic phosphorus in lake sediment. Biogeochemistry, 82, 15-825 826 28. 827 Ruttenberg, K.C., Sulak, D.J. 2011. Sorption and desorption of dissolved organic phosphorus 828 onto iron (oxyhdr)oxides in seawater. Geochimica et Cosmoschimica Acta, 75, 4095-4112. 829 830 831 Sundareshwar, P.V., Morris, J.T. 1999. Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient. Limnology and Oceanography, 44, 1693-1701. 832 833 Thames Water Utilities Ltd. 2011. Technical Appendix C: Water Quality Assessment. LTOA: 834 Phase 2 – Completion of AMP5 Investigations. 835 836 Tebo, B.M., Bargar, J.R., Clement, B.G., Dick, G.J., Murray, K.J., Parker, D., Verity, R., 837 Webb, S.M. 2004. Biogenic Manganese Oxides: Properties and mechanisms of formation. 838 Annu Rev Earth Pl Sc: 32, 287-328. 839 840 Turner.B.L., Mahieu, N. & Condron, L.M. 2003. The Phosphorus composition of temperate 841 pasture spoils determined by NaOH-EDTA extraction and solution ³¹P NMR spectroscopy. 842 843 Organic Geochemistry, 34, 1199-1210. 844 Tye, A.M., Rawlins, B.G., Rushton J.C., Price R. 2016. Understanding the controls on 845 sediment-P interactions and dynamics along a non-tidal river system in a rural-urban 846 catchment: The River Nene. Applied Geochemistry, 66, 219-233. 847 Upchurch, J.B., Edzwald, J.K., O'Melia, C.R. 1974. Phosphorus in sediments of Pamlico 848 849 Estuary. Environmental Science & Technology, 8, 56-58. 850 851 Vane, C.H., Beriro, D. and Turner G. 2015. Rise and fall of Mercury (Hg) pollution in sediment cores of the Thames Estuary, London, UK. Earth and Environmental Science 852 Transactions of the Royal Society of Edinburgh 105, 4, 285-296 853 854
- 855

Vane, C.H., Chenery, S.R., Harrison, I., Kim, A.W., Moss-Hayes, V., Jones, D.G. 2011.
Chemical Signatures of the Anthropocene in the Clyde Estuary, UK: Sediment hosted
Pb, ^{207/206}Pb, Polyaromatic Hydrocarbon (PAH) and Polychlorinated Biphenyl (PCB)
Pollution Records. *Philosophical Transactions of the Royal Society (A)* 369, 1085-1111

- Vane, C.H., Harrison; I and Kim, A.W. 2007. Polycyclic aromatic hydrocarbons (PAHs) and
 polychlorinated biphenyls (PCBs) in sediments from the Mersey Estuary, U.K. *Science of the Total Environment* 374, 112-126.
- Vane, C.H., Harrison, I and Kim, A.W. Moss-Hayes, V., Vickers, B.P., Hong, K. 2009.
 Organic and Metal Contamination in Surface Mangrove Sediments of South China. *Marine Pollution Bulletin*, 58, 14-144.
- Vane, C.H., Rawlins. B.G., Kim, A.W., Moss-Hayes, V., Kendrick, C.P., Leng M.J. 2013.
 Sedimentary transport and fate of polycyclic aromatic hydrocarbons (PAH) from managed
 burning of moorland vegetation on a blanket peat, South Yorkshire, U.K. *Science of the Total Environment* 449, 81-94.
- Wang, Q., Li, Y. 2010. Phosphorus adsorption and desorption behaviour on sediments of
 different origins. Journal of Soils and Sediments, 10, 1159-1173.
- Water Pollution Research Laboratory, 1964. Effects of polluting discharges on the Thames
 Estuary. The Reports of the Thames Survey Committee and the Water Pollution Research
 Laboratory. Water Pollution Research Technical Paper 11. HMSO.
- Worsfield, P.J., Monbet, P., Tappin, A.D., Fitzsimmons, M.F., Stiles, D.A., McKelvie, I.D.
 2008. Characterisation and quantification of organic phosphorus and organic nitrogen
 components in aquatic systems. A Review. Analytica Chimica Acta, 624, 37-58.
- Yao, W., Millero, F.J. 1996. Adsorption of phosphate on manganese dioxide in seawater.
 Environmental Science and Technology, 30, 536-541.
- Zhang, J.Z., Huang, X.L. 2011. Effects of temperature and salinity on phosphate sorption on
 marine sediments. Environmental Science and Technology, 45, 6831-6837.
- Zwolsman, J.J.G. 1994.Seasonal variability and biogeochemistry of phosphorus in the Scheldt
 Estuary, south-west Netherlands. Estuarine, Coastal and Shelf Science, 39, 227-248.

Table 1: Output from observed v predicted regression model for P_{Total} sediments

	Coefficient	Estimate	Std Error	t-value	
	Intercept	1.1946	0.1532	7.795	
	$Log Mn (mg kg^{-1})$	0.7457	0.0582	12.811	
	TOC (%)	0.0626	0.0079	7.842	
	Salinity (ppt)	-0.0061	0.0011	-5.240	
908					
909	Residual standard erro	or: 0.1585 on 24	9 degrees of freedo	m	
910	Multiple R-squared:	0.80, Adjuste	ed R-squared: 0.80		
911	F-statistic: 344 on 3 a	and 249 DF, p-v	alue: < 2.2e-16		
912					
913					
914					
915					
916					
917					
918					
919					
920					
921					
922					
923					
924					
925					
926					
927					
928					
929					
930					
931					
932					
933					
934					
935					
936					
937					
938					

Table 2: Output for observed v predicted regression model for P_{Oxal ate} in 1
 sediments

Coefficient	Estimate	Std Error	t-value	
Intercept	-0.339	0.273	-1.240	
Log Mn (mg kg ⁻¹)	0.437	0.058	7.495	<
Log Fe (mg kg ⁻¹)	0.381	0.057	6.592	<
Log Al (mg kg ⁻¹)	0.321	0.075	4.239	<
Salinity (ppt)	-0.011	0.001	-8.582	<

947	Residual	standard	erre	or:	0.2	208	on	279	degrees	of	f	re	edom

948 Multiple R-squared: 0.80, Adjusted R-squared: 0.80

949 F-statistic: 287.5 on 4 and 279 DF, *p*-value: < 2.2e-16

- 978
- 979

980 Table 3: Outputs for observed v predicted regression model for P_{Inorganic} ext

- 981 NaOH for the Thames sediments.
- 982 Coefficient Estimate **Std Error** t-value 2.548 Intercept 0.4880 0.1915 $Log \ Mn_{Oxalate} \ (mg \ kg^{-1})$ 0.5048 0.0636 7.928 Log Fe_{Oxalate} (mg kg⁻¹) 5.042 0.3231 0.0640 Salinity -0.0130 0.0014 -9.273 983 984 Residual standard error: 0.2123 on 260 degrees of freedom 985 Multiple R-squared: 0.767, Adjusted R-squared: 0.7643 F-986 statistic: 285.3 on 3 and 260 DF, p-value: < 2.2e-16 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004

Figure 2: Map of sampling sites for grab samples (0-3cm) taken from the tidal River
Thames

Figure 3: Characteristics of sediment geochemistry. Graphs (a) and (b) show the relationship between the mean concentration of total Al and Si in the cores with distance from Teddington Lock respectively. In graph C the relationship between total Al and Rb in the 10 cm sediment core sections from all samples are shown (n=260) demonstrating that the sediment is largely derived from one well mixed source throughout the estuary.

1058

1059

1060

1063Figure 4: Graph showing (a) sediment depth of cores (cm), (b) a typical salinity (ppt)1064profile for the tidal Thames taken from Pope & Langston (2011) and (c) mean P_{Total} 1065concentrations (mg kg⁻¹) for the cores. All are plotted against the distance of the sample1066from Teddington Lock.

Figure 5: Box and Whisker plots showing the variation in concentration of P_{Total} in 10
cm core sections of cores taken from each of the four estuary zones designated by
Littlewood and Crossman (2003) and the grab samples (0-3cm) taken in Zones 1 and 2.
The zones are shown in order of distance from Teddington Lock.

Figure 6: Correlations of P_{Total} with other elements associated with the sequestration of Phosphorus

1101 Figure 7: BSEM images taken at 20 kV. Figure 7A (Core 35, depth 10-20 cm) illustrates

1102 the ubiquity of FeS_2 (pyrite) in the sediment as the widespread, locally clustered, bright

1103 areas. Figure 7B (Core 29, 40-50 cm) shows clustered, framboidal, pyrite.

Figure 8: Observed v Predicted regression model for Log P_{Total} for muddy flat
sediments in the tidal river Thames. Results of the regression model can be seen in
Table 1.

Fig 10: The relationship between P_{Total} and P_{Oxalate} in foreshore sediments of the River Thames.

Fig 11: Boxplot showings the range of values of P_{Total}:P_{Oxalate} from Zones 1 and 2 and those from Zones 3 & 4 demonstrating the change in this relationship with increasing salinity.

1170 Figure 12: Correlation relationships shown between oxalate extractable P, Al, Mn and

1171 Fe in Thames sediments

1180Figure 13: Box and whisker plots to show the range of the Degree of Phosphorus1181saturation (DSP) in Thames sediments from the four sediment zones and grab samples

1182 taken from Zones 1 and 2.

- 1194 Figure 14: Observed v predicted for model describing the relationships of Log P_{Oxalate} to
- binding phases in Thames foreshore sediments. Results of the regression model can beseen in Table 2.

- Figure 15: The relationship between concentrations of NaOH extractable P_{Inorganic} and P_{Organic} in three depth segments (0-10 cm, 30-40 cm and 50-60 cm) in cores with distance from Teddington Lock. Cores in Zone 1 are those numbered 1 12, in Zone 2 core number 13 -
- 1208 27, in Zone 3 cores are numbered 28 33 and Zone 4 cores are numbered 34 47.

1209

1210

1211

Figure 16: Observed v predicted for model describing the relationships of Log P_{Inorganic} extracted using NaOH to binding phases in Thames foreshore sediments. Results of the regression model can be seen in Table 3. Solid line is the 1:1 line.

1228 Figure 17: Conceptual model of sediment P behaviour in the Thames estuary based on

1229 data from this study on inter-tidal mud deposits. The sediment zones of Littlewood and

1230 Crossman (2003) are used with salinity values from Pope and Langston (2011).

