182 research outputs found

    Bacterial and metabolic phenotypes associated with inadequate response to ursodeoxycholic acid treatment in primary biliary cholangitis

    Get PDF
    Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease with ursodeoxycholic acid (UDCA) as first-line treatment. Poor response to UDCA is associated with a higher risk of progressing to cirrhosis, but the underlying mechanisms are unclear. UDCA modulates the composition of primary and bacterial-derived bile acids (BAs). We characterized the phenotypic response to UDCA based on BA and bacterial profiles of PBC patients treated with UDCA. Patients from the UK-PBC cohort (n = 419) treated with UDCA for a minimum of 12-months were assessed using the Barcelona dynamic response criteria. BAs from serum, urine, and feces were analyzed using Ultra-High-Performance Liquid Chromatography-Mass Spectrometry and fecal bacterial composition measured using 16S rRNA gene sequencing. We identified 191 non-responders, 212 responders, and a subgroup of responders with persistently elevated liver biomarkers (n = 16). Responders had higher fecal secondary and tertiary BAs than non-responders and lower urinary bile acid abundances, with the exception of 12-dehydrocholic acid, which was higher in responders. The sub-group of responders with poor liver function showed lower alpha-diversity evenness, lower abundance of fecal secondary and tertiary BAs than the other groups and lower levels of phyla with BA-deconjugation capacity (Actinobacteriota/Actinomycetota, Desulfobacterota, Verrucomicrobiota) compared to responders. UDCA dynamic response was associated with an increased capacity to generate oxo-/epimerized secondary BAs. 12-dehydrocholic acid is a potential biomarker of treatment response. Lower alpha-diversity and lower abundance of bacteria with BA deconjugation capacity might be associated with an incomplete response to treatment in some patients

    Regulation of immune responses in primary biliary cholangitis: a transcriptomic analysis of peripheral immune cells

    Get PDF
    BACKGROUND AIMS: In patients with primary biliary cholangitis (PBC), the serum liver biochemistry measured during treatment with ursodeoxycholic acid-the UDCA response-accurately predicts long-term outcome. Molecular characterization of patients stratified by UDCA response can improve biological understanding of the high-risk disease, thereby helping to identify alternative approaches to disease-modifying therapy. In this study, we sought to characterize the immunobiology of the UDCA response using transcriptional profiling of peripheral blood mononuclear cell subsets. METHODS: We performed bulk RNA-sequencing of monocytes and TH1, TH17, TREG, and B cells isolated from the peripheral blood of 15 PBC patients with adequate UDCA response ("responders"), 16 PBC patients with inadequate UDCA response ("nonresponders"), and 15 matched controls. We used the Weighted Gene Co-expression Network Analysis to identify networks of co-expressed genes ("modules") associated with response status and the most highly connected genes ("hub genes") within them. Finally, we performed a Multi-Omics Factor Analysis of the Weighted Gene Co-expression Network Analysis modules to identify the principal axes of biological variation ("latent factors") across all peripheral blood mononuclear cell subsets. RESULTS: Using the Weighted Gene Co-expression Network Analysis, we identified modules associated with response and/or disease status (q<0.05) in each peripheral blood mononuclear cell subset. Hub genes and functional annotations suggested that monocytes are proinflammatory in nonresponders, but antiinflammatory in responders; TH1 and TH17 cells are activated in all PBC cases but better regulated in responders; and TREG cells are activated-but also kept in check-in responders. Using the Multi-Omics Factor Analysis, we found that antiinflammatory activity in monocytes, regulation of TH1 cells, and activation of TREG cells are interrelated and more prominent in responders. CONCLUSIONS: We provide evidence that adaptive immune responses are better regulated in patients with PBC with adequate UDCA response

    The relationship between disease activity and UDCA response criteria in primary biliary cholangitis: A cohort study

    Get PDF
    \ua9 2022 The Authors, Background: Uncertainty exists about how best to identify primary biliary cholangitis (PBC) patients who would benefit from second-line therapy. Existing, purely clinical, ursodeoxycholic acid (UDCA) response criteria accept degrees of liver biochemistry abnormality in responding patients, emerging data, however, suggest that any degree of ongoing abnormality may, in fact, be associated with an increased risk of adverse outcomes. This cohort study explores the link between response status, the biology of high-risk disease and its implications for clinical practice. Methods: Proteomics, exploring 19 markers previously identified as remaining elevated in PBC following UDCA therapy, were performed on 400 serum samples, from participants previously recruited to the UK-PBC Nested Cohort between 2014 and 2019. All participants had an established diagnosis of PBC and were taking therapeutic doses of UDCA for greater than 12 months. UDCA response status was assessed using Paris 1, Paris 2 and the POISE criteria, with additional analyses using normal liver blood tests stratified by bilirubin level. Statistical analysis using parametric t tests and 1-way ANOVA. Findings: Disease markers were statistically significantly higher in UDCA non-responders than in responders for all the UDCA response criteria, suggesting a meaningful link between biochemical disease status and disease mechanism. For each of the criteria, however, marker levels were also statistically significantly higher in responders with ongoing liver function test abnormality compared to those who had normalised their liver biochemistry. IL-4RA, IL-18-R1, CXCL11, 9 and 10, CD163 and ACE2 were consistently elevated across all responder groups with ongoing LFT abnormality. No statistically significant differences occurred between markers in normal LFT groups stratified by bilirubin level. Interpretation: This study provides evidence that any ongoing elevation in alkaline phosphatase levels in PBC after UDCA therapy is associated with some degree of ongoing disease activity. There was no difference in activity between patients with normal LFT when stratified by bilirubin. These findings suggest that if our goal is to completely control disease activity in PBC, then normalisation of alkaline phosphatase and bilirubin should be the treatment target. This would also simplify messaging around goals of therapy in PBC, benefiting both patients and clinicians. Funding: Funding by the UK Medical Research Council (Stratified Medicine Programme) and an independent research grant by Pfizer. The study funders played no role in the study design, data collection, data analyses, data interpretation or manuscript writing

    Regulation of immune responses in primary biliary cholangitis: a transcriptomic analysis of peripheral immune cells

    Get PDF
    Copyright \ua9 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Association for the Study of Liver Diseases.Background &amp; Aims: In patients with primary biliary cholangitis (PBC), the serum liver biochemistry measured during treatment with ursodeoxycholic acid-the UDCA response-accurately predicts long-term outcome. Molecular characterization of patients stratified by UDCA response can improve biological understanding of the high-risk disease, thereby helping to identify alternative approaches to disease-modifying therapy. In this study, we sought to characterize the immunobiology of the UDCA response using transcriptional profiling of peripheral blood mononuclear cell subsets. Methods: We performed bulk RNA-sequencing of monocytes and TH1, TH17, TREG, and B cells isolated from the peripheral blood of 15 PBC patients with adequate UDCA response (“responders”), 16 PBC patients with inadequate UDCA response (“nonresponders”), and 15 matched controls. We used the Weighted Gene Co-expression Network Analysis to identify networks of co-expressed genes (“modules”) associated with response status and the most highly connected genes (“hub genes”) within them. Finally, we performed a Multi-Omics Factor Analysis of the Weighted Gene Co-expression Network Analysis modules to identify the principal axes of biological variation (“latent factors”) across all peripheral blood mononuclear cell subsets. Results: Using the Weighted Gene Co-expression Network Analysis, we identified modules associated with response and/or disease status (q &lt; 0.05) in each peripheral blood mononuclear cell subset. Hub genes and functional annotations suggested that monocytes are proinflammatory in nonresponders, but antiinflammatory in responders; TH1 and TH17 cells are activated in all PBC cases but better regulated in responders; and TREG cells are activated-but also kept in check-in responders. Using the Multi-Omics Factor Analysis, we found that antiinflammatory activity in monocytes, regulation of TH1 cells, and activation of TREG cells are interrelated and more prominent in responders. Conclusions: We provide evidence that adaptive immune responses are better regulated in patients with PBC with adequate UDCA response
    • …
    corecore