36 research outputs found

    Transcription factor LSF facilitiates lysine methylation of α-tubulin by microtubule-associated SET8

    Get PDF
    Microtubules are critical for mitosis, cell motility, and protein and organelle transport, and are a validated target for anticancer drugs. However, tubulin regulation and recruitment in these cellular processes is less understood. Post-translational modifications of tubulin are proposed to regulate microtubule functions and dynamics. Although many such modifications have been investigated, tubulin methylations and enzymes responsible for methylation have only recently begun to be described. Here we report that N-lysine methyl transferase KMT5A (SET8/PR-Set7), which methylates histone H4K20, also methylates α-tubulin. Furthermore, the transcription factor LSF binds both tubulin and SET8, and enhances α-tubulin methylation in vitro, countered by FQI1, a specific small molecule inhibitor of LSF. Thus, the three proteins SET8, LSF, and tubulin, all essential for mitotic progression, interact with each other. Overall, these results point to dual functions for both SET8 and LSF not only in chromatin regulation, but also for cytoskeletal modification.First author draf

    In-Vitro Sorbent-Mediated Removal of Edoxaban from Human Plasma and Albumin Solution

    Get PDF
    BACKGROUND AND OBJECTIVE: Based on previous experience of sorbent-mediated ticagrelor, dabigatran, and radiocontrast agent removal, we set out in this study to test the effect of two sorbents on the removal of edoxaban, a factor Xa antagonist direct oral anticoagulant. METHODS: We circulated 100 mL of edoxaban solution during six first-pass cycles through 40-mL sorbent columns (containing either CytoSorb in three passes or Porapak Q 50-80 mesh in the remaining three passes) during experiments using human plasma and 4% bovine serum albumin solution as drug vehicles. Drug concentration was measured by liquid chromatography-tandem mass spectrometry. RESULTS: Edoxaban concentration in two experiments performed with human plasma dropped from 276.8 to 2.7 ng/mL and undetectable concentrations, respectively, with CytoSorb or Porapak Q 50-80 mesh (p = 0.0031). The average edoxaban concentration decreased from 407 ng/mL +/- 216 ng/mL to 3.3 ng/mL +/- 7 ng/mL (p = 0.017), for a removal rate of 99% across all six samples of human plasma (two samples) and bovine serum albumin solution (four samples). In four out of the six adsorbed samples, the drug concentrations were undetectable. CONCLUSION: Sorbent-mediated technology may represent a viable pathway for edoxaban removal from human plasma or albumin solution

    Accurate proteome-wide protein quantification from high-resolution 15N mass spectra

    Get PDF
    In quantitative mass spectrometry-based proteomics, the metabolic incorporation of a single source of 15N-labeled nitrogen has many advantages over using stable isotope-labeled amino acids. However, the lack of a robust computational framework for analyzing the resulting spectra has impeded wide use of this approach. We have addressed this challenge by introducing a new computational methodology for analyzing 15N spectra in which quantification is integrated with identification. Application of this method to an Escherichia coli growth transition reveals significant improvement in quantification accuracy over previous methods

    The microtubule-associated histone methyltransferase SET8, facilitated by transcription factor LSF, methylates α-tubulin

    Get PDF
    Microtubules are cytoskeletal structures critical for mitosis, cell motility, and protein and organelle transport and are a validated target for anticancer drugs. However, how tubulins are regulated and recruited to support these distinct cellular processes is incompletely understood. Posttranslational modifications of tubulins are proposed to regulate microtubule function and dynamics. Although many of these modifications have been investigated, only one prior study reports tubulin methylation and an enzyme responsible for this methylation. Here we used in vitro radiolabeling, MS, and immunoblotting approaches to monitor protein methylation and immunoprecipitation, immunofluorescence, and pulldown approaches to measure protein-protein interactions. We demonstrate that N-lysine methyltransferase 5A (KMT5A or SET8/PR-Set7), which methylates lysine 20 in histone H4, bound α-tubulin and methylated it at a specific lysine residue, Lys311 Furthermore, late SV40 factor (LSF)/CP2, a known transcription factor, bound both α-tubulin and SET8 and enhanced SET8-mediated α-tubulin methylation in vitro In addition, we found that the ability of LSF to facilitate this methylation is countered by factor quinolinone inhibitor 1 (FQI1), a specific small-molecule inhibitor of LSF. These findings suggest the general model that microtubule-associated proteins, including transcription factors, recruit or stimulate protein-modifying enzymes to target tubulins. Moreover, our results point to dual functions for SET8 and LSF not only in chromatin regulation but also in cytoskeletal modification.R01 GM078240 - NIGMS NIH HHS; R24 GM111625 - NIGMS NIH HHSPublished versio

    Improving the Study of Protein Glycosylation with New Tools for Glycopeptide Enrichment

    Get PDF
    High confidence methods are needed for determining the glycosylation profiles of complex biological samples as well as recombinant therapeutic proteins. A common glycan analysis workflow involves liberation of N-glycans from glycoproteins with PNGase F or O-glycans by hydrazinolysis prior to their analysis. This method is limited in that it does not permit determination of glycan attachment sites. Alternative proteomics-based workflows are emerging that utilize site-specific proteolysis to generate peptide mixtures followed by selective enrichment strategies to isolate glycopeptides. Methods designed for the analysis of complex samples can yield a comprehensive snapshot of individual glycans species, the site of attachment of each individual glycan and the identity of the respective protein in many cases. This chapter will highlight advancements in enzymes that digest glycoproteins into distinct fragments and new strategies to enrich specific glycopeptides

    Mps1 Phosphorylation of Dam1 Couples Kinetochores to Microtubule Plus Ends at Metaphase

    Get PDF
    Duplicated chromosomes are equally segregated to daughter cells by a bipolar mitotic spindle during cell division. By metaphase, sister chromatids are coupled to microtubule (MT) plus ends from opposite poles of the bipolar spindle via kinetochores. Here we describe a phosphorylation event that promotes the coupling of kinetochores to microtubule plus ends

    Plasmid replication-associated single-strand-specific methyltransferases

    No full text
    International audienceAnalysis of genomic DNA from pathogenic strains of Burkholderia cenocepacia J2315 and Escherichia coli O104:H4 revealed the presence of two unusual MTase genes. Both are plasmid-borne ORFs, carried by pBCA072 for B. cenocepacia J2315 and pESBL for E. coli O104:H4. Pacific Biosciences SMRT sequencing was used to investigate DNA methyltransferases M.BceJIII and M.EcoGIX, using artificial constructs. Mating properties of engineered pESBL derivatives were also investigated. Both MTases yield promiscuous m6A modification of single strands, in the context SAY (where S = C or G and Y = C or T). Strikingly, this methylation is asymmetric in vivo, detected almost exclusively on one DNA strand, and is incomplete: typically, around 40% of susceptible motifs are modified. Genetic and biochemical studies suggest that enzyme action depends on replication mode: DNA Polymerase I (PolI)-dependent ColE1 and p15A origins support asymmetric modification, while the PolI-independent pSC101 origin does not. An MTase-PolI complex may enable discrimination of PolI-dependent and independent plasmid origins. M.EcoGIX helps to establish pESBL in new hosts by blocking the action of restriction enzymes, in an orientation-dependent fashion. Expression and action appear to occur on the entering single strand in the recipient, early in conjugal transfer, until lagging-strand replication creates the doublestranded form
    corecore