269 research outputs found

    Reports on visits made to China in 1981

    No full text

    Review study of the requirements for deep ocean remote handling equipment

    No full text

    Comparison of Coulomb Blockade Thermometers with the International Temperature Scale PLTS-2000

    Full text link
    The operation of the primary Coulomb blockade thermometer (CBT) is based on a measurement of bias voltage dependent conductance of arrays of tunnel junctions between normal metal electrodes. Here we report on a comparison of a CBT with a high accuracy realization of the PLTS-2000 temperature scale in the range from 0.008 K to 0.65 K. An overall agreement of about 1% was found for temperatures above 0.25 K. For lower temperatures increasing differences are caused by thermalization problems which are accounted for by numerical calculations based on electron-phonon decoupling.Comment: 6 pages, 5 figure

    Single shot, temporally and spatially resolved measurements of fast electron dynamics using a chirped optical probe

    Get PDF
    A new approach to rear surface optical probing is presented that permits multiple, time-resolved 2D measurements to be made during a single, ultra-intense ( > 1018 W cm−2) laser-plasma interaction. The diagnostic is capable of resolving rapid changes in target reflectivity which can be used to infer valuable information on fast electron transport and plasma formation at the target rear surface. Initial results from the Astra-Gemini laser are presented, with rapid radial sheath expansion together with detailed filamentary features being observed to evolve during single shots

    The use of ultrasound in the clinical re-staging of the axilla after neoadjuvant chemotherapy (NACT).

    Get PDF
    Introduction Ultrasound (US) is the imaging modality of choice for staging the axilla prior to surgery in patients with breast cancer (BC). High pathological complete response rates in the axilla after NACT mean a more conservative approach to surgery can be considered. Radiological re-staging is important in this decision making. After the presentation of results from ACOSOG Z1071 in December 2012, formal ultrasound re-assessment of the axilla after primary therapy was specifically requested in our institution. We report on the accuracy of axillary US (aUS) for identifying residual axillary disease post-NACT.Methods Data were collected on patients who had proven axillary disease prior to NACT and underwent axillary lymph node dissection after NACT between January 2013 and December 2015. Post-chemotherapy aUS reports and axillary pathology reports were classified as positive or negative for abnormal lymph nodes and for residual disease (cCR and pCR respectively).Results The sensitivity and specificity of aUS was 71% and 88% respectively. The negative predictive value (NPV) was 83%. The false negative rate was 29%.Conclusions Axillary ultrasound provides clinically useful information post-NACT, which will guide surgical decision-making. Patients with aUS-negative axillae are likely to have a lower false negative rate of SLNB after NACT (Boughey et al.). However, aUS does not replace the need to identify and biopsy the nodes which were proven to be positive prior to NACT

    High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions

    Get PDF
    Bright proton beams with maximum energies of up to 30MeV have been observed in an experiment investigating ion sheath acceleration driven by a short pulse (21 W cm-2 was investigated, with the interplay between target thickness and laser pre-pulse found to be a key factor. While the maximum proton energies observed were maximised for lm-thick targets, the total proton energy content was seen to peak for thinner, 500 nm, foils. The total proton beam energy reached up to 440 mJ (a conversion efficiency of 4%), marking a significant step forward for many laser-driven ion applications. The experimental results are supported by hydrodynamic and particle-in-cell simulations

    Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy

    Full text link
    In this paper, we present significant progress performed on an experiment dedicated to the determination of the Boltzmann constant, k, by accurately measuring the Doppler absorption profile of a line in a gas of ammonia at thermal equilibrium. This optical method based on the first principles of statistical mechanics is an alternative to the acoustical method which has led to the unique determination of k published by the CODATA with a relative accuracy of 1.7 ppm. We report on the first measurement of the Boltzmann constant by laser spectroscopy with a statistical uncertainty below 10 ppm, more specifically 6.4 ppm. This progress results from improvements in the detection method and in the statistical treatment of the data. In addition, we have recorded the hyperfine structure of the probed saQ(6,3) rovibrational line of ammonia by saturation spectroscopy and thus determine very precisely the induced 4.36 (2) ppm broadening of the absorption linewidth. We also show that, in our well chosen experimental conditions, saturation effects have a negligible impact on the linewidth. Finally, we draw the route to future developments for an absolute determination of with an accuracy of a few ppm.Comment: 22 pages, 11 figure

    Measurement of the angle, temperature and flux of fast electrons emitted from intense laser-solid interactions

    Get PDF
    High-intensity laser-solid interactions generate relativistic electrons, as well as high-energy (multi-MeV) ions and X-rays. The directionality, spectra and total number of electrons that escape atarget-foil is dependent on the absorption, transport and rear-side sheath conditions. Measuring the electrons escaping the target will aid in improving our understanding of these absorption processes and the rear-surface sheath fields that retard the escaping electrons and accelerate ions via the target normal sheath acceleration (TNSA) mechanism. A comprehensive Geant4 study was performed to help analyse measurements made with a wrap-around diagnostic that surrounds the target and uses differential filtering with a FUJI-film image plate detector. The contribution of secondary sources such as X-rays and protons to the measured signal have been taken into account to aid in the retrieval of the electron signal. Angular and spectral data from a high-intensity laser-solid interaction are presented and accompanied by simulations. The total number of emitted electrons has been measured as 2.6 × 1013 with an estimated total energy of 12 ± 1 J from a 100 mu;m Cu target with140 J of incident laser energy during a 4 × 1020 W cm-2 interaction

    Reflection of intense laser light from microstructured targets as a potential diagnostic of laser focus and plasma temperature

    Get PDF
    The spatial-intensity profile of light reflected during the interaction of an intense laser pulse with a microstructured target is investigated experimentally and the potential to apply this as a diagnostic of the interaction physics is explored numerically. Diffraction and speckle patterns are measured in the specularly reflected light in the cases of targets with regular groove and needle-like structures, respectively, highlighting the potential to use this as a diagnostic of the evolving plasma surface. It is shown, via ray-tracing and numerical modelling, that for a laser focal spot diameter smaller than the periodicity of the target structure, the reflected light patterns can potentially be used to diagnose the degree of plasma expansion, and by extension the local plasma temperature, at the focus of the intense laser light. The reflected patterns could also be used to diagnose the size of the laser focal spot during a high-intensity interaction when using a regular structure with known spacing

    Birds collected in Bolivia

    Get PDF
    p. [77]-112 ; 24 cm.Includes bibliographical references
    corecore