83 research outputs found

    Centrosome misorientation reduces stem cell division during ageing

    Full text link
    Asymmetric division of adult stem cells generates one self- renewing stem cell and one differentiating cell, thereby maintaining tissue homeostasis. A decline in stem cell function has been proposed to contribute to tissue ageing, although the underlying mechanism is poorly understood. Here we show that changes in the stem cell orientation with respect to the niche during ageing contribute to the decline in spermatogenesis in the male germ line of Drosophila. Throughout the cell cycle, centrosomes in germline stem cells ( GSCs) are oriented within their niche and this ensures asymmetric division. We found that GSCs containing misoriented centrosomes accumulate with age and that these GSCs are arrested or delayed in the cell cycle. The cell cycle arrest is transient, and GSCs appear to re- enter the cell cycle on correction of centrosome orientation. On the basis of these findings, we propose that cell cycle arrest associated with centrosome misorientation functions as a mechanism to ensure asymmetric stem cell division, and that the inability of stem cells to maintain correct orientation during ageing contributes to the decline in spermatogenesis. We also show that some of the misoriented GSCs probably originate from dedifferentiation of spermatogonia.University of Michigan ; March of Dimes Basil O'Conner Starter Scholar Research Award ; Searle Scholar Program ; NIH [P01 DK53074, R01GM072006]We thank C. Gonzalez, D. McKearin, N. Rusan, M. Peifer and the Bloomington Stock Center for fly stocks; R. Lehmann, C. Field and the Developmental Studies Hybridoma Bank for antibodies; M. Kiel and D. Nakada for help with X-ray irradiation; and S. Morrison and T. Mahowald for comments on the manuscript. This research was supported by a University of Michigan start-up fund, March of Dimes Basil O'Conner Starter Scholar Research Award and the Searle Scholar Program (to Y.M.Y.), and NIH grants P01 DK53074 (to M.T.F.) and R01GM072006 (to A.J.H.).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62879/1/nature07386.pd

    Intracellular Spatial Localization Regulated by the Microtubule Network

    Get PDF
    The commonly recognized mechanisms for spatial regulation inside the cell are membrane-bounded compartmentalization and biochemical association with subcellular organelles. We use computational modeling to investigate another spatial regulation mechanism mediated by the microtubule network in the cell. Our results demonstrate that the mitotic spindle can impose strong sequestration and concentration effects on molecules with binding affinity for microtubules, especially dynein-directed cargoes. The model can recapitulate the essence of three experimental observations on distinct microtubule network morphologies: the sequestration of germ plasm components by the mitotic spindles in the Drosophila syncytial embryo, the asymmetric cell division initiated by the time delay in centrosome maturation in the Drosophila neuroblast, and the diffusional block between neighboring energids in the Drosophila syncytial embryo. Our model thus suggests that the cell cycle-dependent changes in the microtubule network are critical for achieving different spatial regulation effects. The microtubule network provides a spatially extensive docking platform for molecules and gives rise to a “structured cytoplasm”, in contrast to a free and fluid environment

    Adenomatous Polyposis Coli Regulates Axon Arborization and Cytoskeleton Organization via Its N-Terminus

    Get PDF
    Conditional deletion of APC leads to marked disruption of cortical development and to excessive axonal branching of cortical neurons. However, little is known about the cell biological basis of this neuronal morphological regulation. Here we show that APC deficient cortical neuronal growth cones exhibit marked disruption of both microtubule and actin cytoskeleton. Functional analysis of the different APC domains revealed that axonal branches do not result from stabilized β-catenin, and that the C-terminus of APC containing microtubule regulatory domains only partially rescues the branching phenotype. Surprisingly, the N-terminus of APC containing the oligomerization domain and the armadillo repeats completely rescues the branching and cytoskeletal abnormalities. Our data indicate that APC is required for appropriate axon morphological development and that the N-terminus of APC is important for regulation of the neuronal cytoskeleton

    Synergistic effects of oncolytic reovirus and docetaxel chemotherapy in prostate cancer

    Get PDF
    Reovirus type 3 Dearing (T3D) has demonstrated oncolytic activity in vitro, in in vivo murine models and in early clinical trials. However the true potential of oncolytic viruses may only be realized fully in combination with other modalities such as chemotherapy, targeted therapy and radiotherapy. In this study, we examine the oncolytic activity of reovirus T3D and chemotherapeutic agents against human prostate cancer cell lines, with particular focus on the highly metastatic cell line PC3 and the chemotherapeutic agent docetaxel. Docetaxel is the standard of care for metastatic prostate cancer and acts by disrupting the normal process of microtubule assembly and disassembly. Reoviruses have been shown to associate with microtubules and may require this association for efficient viral replication

    Tubulin binding cofactor C (TBCC) suppresses tumor growth and enhances chemosensitivity in human breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microtubules are considered major therapeutic targets in patients with breast cancer. In spite of their essential role in biological functions including cell motility, cell division and intracellular transport, microtubules have not yet been considered as critical actors influencing tumor cell aggressivity. To evaluate the impact of microtubule mass and dynamics on the phenotype and sensitivity of breast cancer cells, we have targeted tubulin binding cofactor C (TBCC), a crucial protein for the proper folding of α and β tubulins into polymerization-competent tubulin heterodimers.</p> <p>Methods</p> <p>We developed variants of human breast cancer cells with increased content of TBCC. Analysis of proliferation, cell cycle distribution and mitotic durations were assayed to investigate the influence of TBCC on the cell phenotype. <it>In vivo </it>growth of tumors was monitored in mice xenografted with breast cancer cells. The microtubule dynamics and the different fractions of tubulins were studied by time-lapse microscopy and lysate fractionation, respectively. <it>In vitro </it>sensitivity to antimicrotubule agents was studied by flow cytometry. <it>In vivo </it>chemosensitivity was assayed by treatment of mice implanted with tumor cells.</p> <p>Results</p> <p>TBCC overexpression influenced tubulin fraction distribution, with higher content of nonpolymerizable tubulins and lower content of polymerizable dimers and microtubules. Microtubule dynamicity was reduced in cells overexpressing TBCC. Cell cycle distribution was altered in cells containing larger amounts of TBCC with higher percentage of cells in G2-M phase and lower percentage in S-phase, along with slower passage into mitosis. While increased content of TBCC had little effect on cell proliferation <it>in vitro</it>, we observed a significant delay in tumor growth with respect to controls when TBCC overexpressing cells were implanted as xenografts <it>in vivo</it>. TBCC overexpressing variants displayed enhanced sensitivity to antimicrotubule agents both <it>in vitro </it>and in xenografts.</p> <p>Conclusion</p> <p>These results underline the essential role of fine tuned regulation of tubulin content in tumor cells and the major impact of dysregulation of tubulin dimer content on tumor cell phenotype and response to chemotherapy. A better understanding of how the microtubule cytoskeleton is dysregulated in cancer cells would greatly contribute to a better understanding of tumor cell biology and characterisation of resistant phenotypes.</p

    The Drosophila homologue of Rootletin is required for mechanosensory function and ciliary rootlet formation in chordotonal sensory neurons

    Get PDF
    BACKGROUND: In vertebrates, rootletin is the major structural component of the ciliary rootlet and is also part of the tether linking the centrioles of the centrosome. Various functions have been ascribed to the rootlet, including maintenance of ciliary integrity through anchoring and facilitation of transport to the cilium or at the base of the cilium. In Drosophila, Rootletin function has not been explored. RESULTS: In the Drosophila embryo, Rootletin is expressed exclusively in cell lineages of type I sensory neurons, the only somatic cells bearing a cilium. Expression is strongest in mechanosensory chordotonal neurons. Knock-down of Rootletin results in loss of ciliary rootlet in these neurons and severe disruption of their sensory function. However, the sensory cilium appears largely normal in structure and in localisation of proteins suggesting no strong defect in ciliogenesis. No evidence was found for a defect in cell division. CONCLUSIONS: The role of Rootletin as a component of the ciliary rootlet is conserved in Drosophila. In contrast, lack of a general role in cell division is consistent with lack of centriole tethering during the centrosome cycle in Drosophila. Although our evidence is consistent with an anchoring role for the rootlet, severe loss of mechanosensory function of chordotonal (Ch) neurons upon Rootletin knock-down may suggest a direct role for the rootlet in the mechanotransduction mechanism itself

    Drosophila neuroblasts retain the daughter centrosome

    Get PDF
    During asymmetric mitosis, both in male Drosophila germline stem cells and in mouse embryo neural progenitors, the mother centrosome is retained by the self-renewed cell; hence suggesting that mother centrosome inheritance might contribute to stemness. We test this hypothesis in Drosophila neuroblasts (NBs) tracing photo converted centrioles and a daughter-centriole-specific marker generated by cloning the Drosophila homologue of human Centrobin. Here we show that upon asymmetric mitosis, the mother centrosome is inherited by the differentiating daughter cell. Our results demonstrate maturation-dependent centrosome fate in Drosophila NBs and that the stemness properties of these cells are not linked to mother centrosome inheritance

    Activation of c-Jun N-Terminal Kinase (JNK) during Mitosis in Retinal Progenitor Cells

    Get PDF
    Most studies of c-Jun N-terminal Kinase (JNK) activation in retinal tissue were done in the context of neurodegeneration. In this study, we investigated the behavior of JNK during mitosis of progenitor cells in the retina of newborn rats. Retinal explants from newborn rats were kept in vitro for 3 hours and under distinct treatments. Sections of retinal explants or freshly fixed retinal tissue were used to detect JNK phosphorylation by immunohistochemistry, and were examined through both fluorescence and confocal microscopy. Mitotic cells were identified by chromatin morphology, histone-H3 phosphorylation, and location in the retinal tissue. The subcellular localization of proteins was analyzed by double staining with both a DNA marker and an antibody to each protein. Phosphorylation of JNK was also examined by western blot. The results showed that in the retina of newborn rats (P1), JNK is phosphorylated during mitosis of progenitor cells, mainly during the early stages of mitosis. JNK1 and/or JNK2 were preferentially phosphorylated in mitotic cells. Inhibition of JNK induced cell cycle arrest, specifically in mitosis. Treatment with the JNK inhibitor decreased the number of cells in anaphase, but did not alter the number of cells in either prophase/prometaphase or metaphase. Moreover, cells with aberrant chromatin morphology were found after treatment with the JNK inhibitor. The data show, for the first time, that JNK is activated in mitotic progenitor cells of developing retinal tissue, suggesting a new role of JNK in the control of progenitor cell proliferation in the retina

    EB1 Is Required for Spindle Symmetry in Mammalian Mitosis

    Get PDF
    Most information about the roles of the adenomatous polyposis coli protein (APC) and its binding partner EB1 in mitotic cells has come from siRNA studies. These suggest functions in chromosomal segregation and spindle positioning whose loss might contribute to tumourigenesis in cancers initiated by APC mutation. However, siRNA-based approaches have drawbacks associated with the time taken to achieve significant expression knockdown and the pleiotropic effects of EB1 and APC gene knockdown. Here we describe the effects of microinjecting APC- or EB1- specific monoclonal antibodies and a dominant-negative EB1 protein fragment into mammalian mitotic cells. The phenotypes observed were consistent with the roles proposed for EB1 and APC in chromosomal segregation in previous work. However, EB1 antibody injection also revealed two novel mitotic phenotypes, anaphase-specific cortical blebbing and asymmetric spindle pole movement. The daughters of microinjected cells displayed inequalities in microtubule content, with the greatest differences seen in the products of mitoses that showed the severest asymmetry in spindle pole movement. Daughters that inherited the least mobile pole contained the fewest microtubules, consistent with a role for EB1 in processes that promote equality of astral microtubule function at both poles in a spindle. We propose that these novel phenotypes represent APC-independent roles for EB1 in spindle pole function and the regulation of cortical contractility in the later stages of mitosis. Our work confirms that EB1 and APC have important mitotic roles, the loss of which could contribute to CIN in colorectal tumour cells
    corecore