1,751 research outputs found

    A Scalable Information Theoretic Approach to Distributed Robot Coordination

    Get PDF
    This paper presents a scalable information theoretic approach to infer the state of an environment by distributively controlling robots equipped with sensors. The robots iteratively estimate the environment state using a recursive Bayesian filter, while continuously moving to improve the quality of the estimate by following the gradient of mutual information. Both the filter and the controller use a novel algorithm for approximating the robots' joint measurement probabilities, which combines consensus (for decentralization) and sampling (for scalability). The approximations are shown to approach the true joint measurement probabilities as the size of the consensus rounds grows or as the network becomes complete. The resulting gradient controller runs in constant time with respect to the number of robots, and linear time with respect to the number of sensor measurements and environment discretization cells, while traditional mutual information methods are exponential in all of these quantities. Furthermore, the controller is proven to be convergent between consensus rounds and, under certain conditions, is locally optimal. The complete distributed inference and coordination algorithm is demonstrated in experiments with five quad-rotor flying robots and simulations with 100 robots.This work is sponsored by the Department of the Air Force under Air Force contract number FA8721-05-C-0002. The opinions, interpretations, recommendations, and conclusions are those of the authors and are not necessarily endorsed by the United States Government. This work is also supported in part by ARO grant number W911NF-05-1-0219, ONR grant number N00014-09-1-1051, NSF grant number EFRI-0735953, ARL grant number W911NF-08-2-0004, MIT Lincoln Laboratory, the European Commission, and the Boeing Company

    Unemployment Duration and Attitudes Towards Work among People Over 45 Years Old

    Get PDF
    The situation of global economic crisis and the rapid increase of the unemployment rate cause changes in people's attitudes about the labor market. These changes, sometimes, are motivated by the influence of certain individual variables such as the duration of unemployment. The objective of this research is to analyze the mediator influence of unemployment duration in the attitudes towards work among unemployed people over 45 years old. The people who participate in the research are 161 unemployed that agreed voluntarily in taking part in the interview of attitudes towards work. The data took out from the interviews were analyzed with the statistical software ATLAS.ti 6.2. The results demonstrate that unemployment duration plays an important mediator role in the attitudes towards work when conditioning the job search behavior and favor the chances of finding a job. The conclusion is about practical suggestions and the continuity of research in this area

    Towards printable robotics: Origami-inspired planar fabrication of three-dimensional mechanisms

    Get PDF
    This work presents a technique which allows the application of 2-D fabrication methods to build 3-D robotic systems. The ability to print robots introduces a fast and low-cost fabrication method to modern, real-world robotic applications. To this end, we employ laser-engraved origami patterns to build a new class of robotic systems for mobility and manipulation. Origami is suitable for printable robotics as it uses only a flat sheet as the base structure for building complicated functional shapes, which can be utilized as robot bodies. An arbitrarily complex folding pattern can be used to yield an array of functionalities, in the form of actuated hinges or active spring elements. For actuation, we use compact NiTi coil actuators placed on the body to move parts of the structure on-demand. We demonstrate, as a proof-of-concept case study, the end-to-end fabrication and assembly of a simple mobile robot that can undergo worm-like peristaltic locomotion.United States. Defense Advanced Research Projects Agency (Grant W911NF-08-C-0060)United States. Defense Advanced Research Projects Agency (Grant W911NF-08-1-0228

    Relations of Water-quality Constituent Concentrations to Surrogate Measurements in the Lower Platte River Corridor, Nebraska, 2007 through 2011

    Get PDF
    The lower Platte River, Nebraska, provides drinking water, irrigation water, and in-stream flows for recreation, wildlife habitat, and vital habitats for several threatened and endangered species. The United States Geological Survey (USGS), in cooperation with the Lower Platte River Corridor Alliance (LPRCA) developed site-specific regression models for water-quality constituents at four sites (Shell Creek near Columbus, Nebraska [USGS site 06795500]; Elkhorn River at Waterloo, Nebraska [USGS site 06800500]; Salt Creek near Ashland, Nebraska [USGS site 06805000]; and Platte River at Louisville, Nebraska [USGS site 06805500]) in the lower Platte River corridor. The models were developed by relating continuously monitored water-quality properties (surrogate measurements) to discrete water-quality samples. These models enable existing web-based software to provide near-real-time estimates of stream-specific constituent concentrations to support natural resources management decisions.Since 2007, USGS, in cooperation with the LPRCA, has continuously monitored four water-quality properties seasonally within the lower Platte River corridor: specific conductance, water temperature, dissolved oxygen, and turbidity. During 2007 through 2011, the USGS and the Nebraska Department of Environmental Quality collected and analyzed discrete water-quality samples for nutrients, major ions, pesticides, suspended sediment, and bacteria. These datasets were used to develop the regression models. This report documents the collection of these various water-quality datasets and the development of the site-specific regression models.Regression models were developed for all four monitored sites. Constituent models for Shell Creek included nitrate plus nitrite, total phosphorus, orthophosphate, atrazine, acetochlor, suspended sediment, and Escherichia coli (E. coli) bacteria. Regression models that were developed for the Elkhorn River included nitrate plus nitrite, total Kjeldahl nitrogen, total phosphorus, orthophosphate, chloride, atrazine, acetochlor, suspended sediment, and E. coli. Models developed for Salt Creek included nitrate plus nitrite, total Kjeldahl nitrogen, suspended sediment, and E. coli. Lastly, models developed for the Platte River site included total Kjeldahl nitrogen, total phosphorus, sodium, metolachlor, atrazine, acetochlor, suspended sediment, and E. coli

    Streambed Adjustment and Channel Widening in Eastern Nebraska

    Get PDF
    In eastern Nebraska, stream straightening and dredging efforts since the 1890s have disturbed the natural equilibrium of stream channels and have led to streambed adjustment by degradation and subsequent channel widening. This report describes a study to evaluate the effect these disturbances have had on stream channels in eastern Nebraska. Two sets of survey data were collected approximately 2 years apart during 1996–99 at 151 primary sites. Additionally, historical streambed-elevation data (dating back to the 1890s) were compiled from several sources for the primary sites and 45 supplemental sites, and relevant disturbances were identified for each of eight basin groupings. Streambed-elevation data sets were used to estimate the amount of change to the streambed at the sites over the time period of the data. Recent channel widening was documented for 73 of the primary sites by comparing the two survey sets

    Assessing real world imagery in virtual environments for people with cognitive disabilities

    Get PDF
    People with cognitive disabilities are often socially excluded. We propose a system based on Virtual and Augmented Reality that has the potential to act as an educational and support tool in everyday tasks for people with cognitive disabilities. Our solution consists of two components: the first that enables users to train for several essential quotidian activities and the second that is meant to offer real time guidance feedback for immediate support. In order to illustrate the functionality of our proposed system, we chose to train and support navigation skills. Thus, we conducted a preliminary study on people with Down Syndrome (DS) based on a navigation task. Our experiment was aimed at evaluating the visual and spatial perception of people with DS when interacting with different elements of our system. We provide a preliminary evaluation that illustrates how people with DS perceive different landmarks and types of visual feedback, in static images and videos. Although we focused our study on people with DS, people with different cognitive disabilities could also benefit from the features of our solution. This analysis is mandatory in the design of a virtual intelligent system with several functionalities that aims at helping disabled people in developing basic knowledge in every day tasks

    Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antisense-mediated exon skipping is currently one of the most promising therapeutic approaches for Duchenne muscular dystrophy (DMD). Using antisense oligonucleotides (AONs) targeting specific exons the DMD reading frame is restored and partially functional dystrophins are produced. Following proof of concept in cultured muscle cells from patients with various deletions and point mutations, we now focus on single and multiple exon duplications. These mutations are in principle ideal targets for this approach since the specific skipping of duplicated exons would generate original, full-length transcripts.</p> <p>Methods</p> <p>Cultured muscle cells from DMD patients carrying duplications were transfected with AONs targeting the duplicated exons, and the dystrophin RNA and protein were analyzed.</p> <p>Results</p> <p>For two brothers with an exon 44 duplication, skipping was, even at suboptimal transfection conditions, so efficient that both exons 44 were skipped, thus generating, once more, an out-of-frame transcript. In such cases, one may resort to multi-exon skipping to restore the reading frame, as is shown here by inducing skipping of exon 43 and both exons 44. By contrast, in cells from a patient with an exon 45 duplication we were able to induce single exon 45 skipping, which allowed restoration of wild type dystrophin. The correction of a larger duplication (involving exons 52 to 62), by combinations of AONs targeting the outer exons, appeared problematic due to inefficient skipping and mistargeting of original instead of duplicated exons.</p> <p>Conclusion</p> <p>The correction of DMD duplications by exon skipping depends on the specific exons targeted. Its options vary from the ideal one, restoring for the first time the true, wild type dystrophin, to requiring more 'classical' skipping strategies, while the correction of multi-exon deletions may need the design of tailored approaches.</p

    Origami-Inspired Printed Robots

    Get PDF
    Robot manufacturing is currently highly specialized, time consuming, and expensive, limiting accessibility and customization. Existing rapid prototyping techniques (e.g., 3-D printing) can achieve complex geometries and are becoming increasingly accessible; however, they are limited to one or two materials and cannot seamlessly integrate active components. We propose an alternative approach called printable robots that takes advantage of available planar fabrication methods to create integrated electromechanical laminates that are subsequently folded into functional 3-D machines employing origami-inspired techniques. We designed, fabricated, and tested prototype origami robots to address the canonical robotics challenges of mobility and manipulation, and subsequently combined these designs to generate a new, multifunctional machine. The speed of the design and manufacturing process as well as the ease of composing designs create a new paradigm in robotic development, which has the promise to democratize access to customized robots for industrial, home, and educational use.National Science Foundation (U.S.). Expeditions Program (Grant CCF-1138967
    • …
    corecore