28 research outputs found

    Natural (∆9-THC) and synthetic (JWH-018) cannabinoids induce seizures by acting through the cannabinoid CB1 receptor

    Get PDF
    Natural cannabinoids and their synthetic substitutes are the most widely used recreational drugs. Numerous clinical cases describe acute toxic symptoms and neurological consequences following inhalation of the mixture of synthetic cannabinoids known as “Spice.” Here we report that an intraperitoneal administration of the natural cannabinoid Δ9-tetrahydrocannabinol (10 mg/kg), one of the main constituent of marijuana, or the synthetic cannabinoid JWH-018 (2.5 mg/kg) triggered electrographic seizures in mice, recorded by electroencephalography and videography. Administration of JWH-018 (1.5, 2.5 and 5 mg/kg) increased seizure spikes dose-dependently. Pretreatment of mice with AM-251 (5 mg/kg), a cannabinoid receptor 1-selective antagonist, completely prevented cannabinoid-induced seizures. These data imply that abuse of cannabinoids can be dangerous and represents an emerging public health threat. Additionally, our data strongly suggest that AM-251 could be used as a crucial prophylactic therapy for cannabinoid-induced seizures or similar life-threatening conditions

    HPLC-UV method development for fentanyl determination in rat plasma and its application to elucidate pharmacokinetic behavior after i.p. administration to rats.

    Get PDF
    A simple, rapid and validated high performance liquid chromatography method with UV detection for the quantification of an opioid agonist, fentanyl (FEN), in rat plasma was developed. The assay procedure involved chromatographic separation using a ZIC-HILIC SeQUANT column (250 mm × 4.6 mm, i.d., 5 μm) and a mobile phase of acetonitrile and acetate buffer (pH 3.4, 20mM) of ratio (=65:35, v/v) at a flow rate of 1.2 mL/min and detection wavelength of 201 nm. Plasma sample (100 μL) pretreatment was based on simple deprotienization by acetonitrile spiked with clonidine as an internal standard (I.S.) of 20 ng/mL followed by extraction with tert-butyl methyl ether and centrifugation. The organic layer was evaporated under N(2) gas and reconstituted with 100 μL of acetate buffer (pH 3.4, 20mM), and 50-μL portions of reconstituted sample were injected onto the column. Sample analysis including sample pretreatment was achieved within 35 min. Calibration curve was linear (r ≥ 0.998) from 5 to 100 ng/mL. Both intra- and inter-day assay precisions that are presented through RSD were lower than 12.6% for intra-day and lower than 12.0% for inter-day assessment. Limit of detection was 0.8 ng/mL at S/N of 3. This method was omitting the use of expensive solid phase extraction and time consuming liquid extraction procedures. Moreover, the present method was successfully applied to study pharmacokinetic parameters of FEN after intraperitoneal administration to male Wistar rat. Pharmacokinetic parameters estimated by using moment analysis were T(1/2) 198.3 ± 44.7 min, T(max) 28.3 ± 2.9 min and AUC(0-180) 15.6 ± 2.9(× 10(2))ngmin/mL

    HPLC determination of methylphenidate and its metabolite, ritalinic acid, by high-performance liquid chromatography with peroxyoxalate chemiluminescence detection.

    Get PDF
    An HPLC-peroxyoxalate chemiluminescence (PO-CL) method for simultaneous determination of methylphenidate (MPH) and ritalinic acid (RA) was developed. The method was used to monitor MPH and RA after administration of MPH to rats. Deproteinized plasma spiked with 1-(3-trifluoromethylphenyl)piperazine (IS) was dried and labeled with 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F). The labeled sample was cleaned with two kinds of solid-phase extraction cartridge, and the DBD-labels were separated on an ODS column with gradient elution using a mixture of CH(3)CN and imidazole-HNO(3) buffer. Separation of MPH and RA can be achieved within 33 min. The LODs of MPH and RA at a signal-to-noise ratio of 3 were 2.2 and 0.4 ng mL(-1), respectively. Moreover, monitoring of MPH and RA after MPH administration (10 mg kg(-1)) to rat could be performed. The concentration of RA 480 min after administration was eight times higher than that of MPH. The proposed HPLC-PO-CL method was useful for determination of MPH and RA in rat plasma and was successfully used to monitor these substances after MPH administration

    Changes in the prevalence of new psychoactive substances and their legal status in Japan

    No full text
    corecore