205 research outputs found

    From Sacred to Scientific: Epic Religion, Spectacular Science, and Charlton Heston’s Science Fiction Cinema

    Get PDF
    This paper analyses how long-1960s cinema responded to and framed public discourses surrounding religion and science. This approach allows for a discussion that extends beyond a critical study of the scholarly debates that surround the place of religion in science during a transitional period. Charlton Heston was an epic actor who went from literally playing God in The Ten Commandments (1956) to playing “god” as a messianic scientist in The Omega Man (1971). Best known for playing Moses, Heston became an unlikely science-based cinema star during the early 1970s. He was re-imagined as a scientist, but the religiosity of his established persona was inescapable. Heston and the science-based films he starred in capitalized upon the utopian promises of real science, and also the fears of the vocal activist counterculture. Planet of the Apes (1968), Omega Man (1971), Soylent Green (1973), and other science-based films made between 1968-1977 were bleak countercultural warnings about excessive consumerism, uncontrolled science, nuclear armament, irreversible environmental damage, and eventual human extinction. In this paper I argue that Heston’s transition from biblical epic star to science-fiction anti-hero represents the way in which the role and interpretation of science changed in post-classical cinema. Despite the shift from religious epic to science-based spectacle, religion remained a faithful component of Hollywood output indicating the ongoing connection between science and religion in US culture. I will consider the transition from sacred to science-based narratives and how religion was utilised across the production process of films that commented upon scientific advances

    Orientational Effects and Random Mixing in 1-Alkanol + Alkanone Mixtures

    Get PDF
    1-Alkanol + alkanone systems have been investigated through the data analysis of molar excess functions, enthalpies, isobaric heat capacities, volumes and entropies, and using the Flory model and the formalism of the concentrationconcentration structure factor (SCC(0)). The enthalpy of the hydroxyl-carbonyl interactions has been evaluated. These interactions are stronger in mixtures with shorter alcohols (methanol-1-butanol) and 2-propanone or 2-butanone. However, effects related to the self-association of alcohols and to solvation between unlike molecules are of minor importance when compared with those which arise from dipolar interactions. Physical interactions are more relevant in mixtures with longer 1-alkanols. The studied systems are characterized by large structural effects. The variation of the molar excess enthalpy with the alcohol size along systems with a given ketone or with the alkanone size in solutions with a given alcohol are discussed in terms of the different contributions to this excess function. Mixtures with methanol show rather large orientational effects. The random mixing hypothesis is attained to a large extent for mixtures with 1-alkanols ≠ methanol and 2-alkanones. Steric effects and cyclization lead to stronger orientational effects in mixtures with 3-pentanone, 4-heptanone, or cyclohexanone. The increase of temperature weakens orientational effects. Results from SCC(0) calculations show that homocoordination is predominant and support conclusions obtained from the Flory model.Ministerio de Ciencia e Innovación, under Project FIS2010-1695

    Orientational Effects and Random Mixing in 1‑Alkanol + Nitrile Mixtures

    Get PDF
    1-Alkanol + alkanenitrile or + benzonitrile systems have been investigated by means of the molar excess functionsenthalpies (Hm E ), isobaric heat capacities (Cp,m E ), volumes (Vm E ), and entropiesand using the Flory model and the concentration−concentration structure factor (SCC(0)) formalism. From the analysis of the experimental data available in the literature, it is concluded that interactions are mainly of dipolar type. In addition, large Hm E values contrast with rather low Vm E values, indicating the existence of strong structural effects. Hm E measurements have been used to evaluate the enthalpy of the hydroxyl−nitrile interactions (ΔHOH−CN). They are stronger in methanol systems and become weaker when the alcohol size increases. In solutions with a given short chain 1-alkanol (up to 1-butanol), the replacement of ethanenitrile by butanenitrile weakens the mentioned interactions. Application of the Flory model shows that orientational effects exist in methanol or 1- nonanol, or 1-decanol + ethanenitrile mixtures. In the former solution, this is due to the existence of interactions between unlike molecules. For mixtures including 1-nonanol or 1-decanol, the systems at 298.15 K are close to their UCST (upper critical solution temperature), and interactions between like molecules are dominant. Orientational effects also are encountered in methanol or ethanol + butanenitrile mixtures because self-association of the alcohol plays a more important role. Aromaticity effect seems to enhance orientational effects. For the remainder of the systems under consideration, the random mixing hypothesis is attained to a rather large extent. Results from the application of the SCC(0) formalism show that homocoordination is the dominant trend in the investigated solutions, and are consistent with those obtained from the Flory model

    Die Änderung des maritimen Dunst-Streukoeffizienten mit der relativen Feuchte

    No full text
    The equilibrium radii of mar1t1me aerosol particles are calculated for the purpose of describing quantitatively the changes in the standard visibility or in the scattering coefficient, which result from changes in the humidity. No assumptions are made with regard to particular particle size distributions. Changes in the density and in the refractive index of the aerosol droplets and insoluble ingredients are admitted. The results are illustrated with an aqueous NaCl-aerosol and are compared with the measurements of other authors. A close mathematical relationship is found to exist between the wavelength dependence of the scattering coefficient for haze and its changes with humidity. Applied to the measurements from the Atlantic "Meteor"-Expedition 1965, there follows a deformation of the oceanic particle size distributions in the range below 1 µm radius. Above 98 % humidity there result characteristic changes in the size distributions of any aerosol, which agree with frequently observed changes in time of the wavelength dependence of the atmospheric scattering coefficient

    Bestimmung der Atomverteilungskurven von festem Kupfer bei hohen Temperaturen

    No full text

    Influence of Texture on a(sin2ψ) Curves Obtained From a Cold Rolled Nickel Sheet using Synchrotron Radiation

    No full text
    The Two-Axis Diffractometer at HASYLAB was used to measure a(sin2ψ) curvesby reflecting synchrotron radiation from five different lattice planes of a cold rollednickel sheet. We are especially interested in the complex surface state of thespecimen and investigated the sample as delivered without further polishing andetching. Strongly non-linear a(sin2ψ) curves were observed. Most of them vary in anon-linear way if external uniaxial stress is applied. In this paper we study theinfluence of texture using formalism based on the ODF, and evaluated for the Reussand the Voigt cases, respectively. Texture alone, however, is not sufficient to explainthe whole variety of the observed effects
    corecore