165 research outputs found

    Ceftriaxone-Resistant Salmonella Infection Acquired by a Child from Cattle

    Get PDF
    Background The emergence of resistance to antimicrobial agents within the salmonellae is a worldwide problem that has been associated with the use of antibiotics in livestock. Resistance to ceftriaxone and the fluoroquinolones, which are used to treat invasive salmonella infections, is rare in the United States. We analyzed the molecular characteristics of a ceftriaxone-resistant strain of Salmonella enterica serotype typhimurium isolated from a 12-year-old boy with fever, abdominal pain, and diarrhea. Methods We used pulsed-field gel electrophoresis and analysis of plasmids and β-lactamases to compare the ceftriaxone-resistant S. enterica serotype typhimurium from the child with four isolates of this strain obtained from cattle during a local outbreak of salmonellosis. Results The ceftriaxone-resistant isolate from the child was indistinguishable from one of the isolates from cattle, which was also resistant to ceftriaxone. Both ceftriaxone-resistant isolates were resistant to 13 antimicrobial agents; all but one of the resistance determinants were on a conjugative plasmid of 160 kb that encoded the functional group 1 β-lactamase CMY-2. Both ceftriaxone-resistant isolates were closely related to the three other salmonella isolates obtained from cattle, all of which were susceptible to ceftriaxone. Conclusions This study provides additional evidence that antibiotic-resistant strains of salmonella in the United States evolve primarily in livestock. Resistance to ceftriaxone, the drug of choice for invasive salmonella disease, is a public health concern, especially with respect to children, since fluoroquinolones, which can also be used to treat this disease, are not approved for use in children

    Toward Performance-Portable PETSc for GPU-based Exascale Systems

    Full text link
    The Portable Extensible Toolkit for Scientific computation (PETSc) library delivers scalable solvers for nonlinear time-dependent differential and algebraic equations and for numerical optimization.The PETSc design for performance portability addresses fundamental GPU accelerator challenges and stresses flexibility and extensibility by separating the programming model used by the application from that used by the library, and it enables application developers to use their preferred programming model, such as Kokkos, RAJA, SYCL, HIP, CUDA, or OpenCL, on upcoming exascale systems. A blueprint for using GPUs from PETSc-based codes is provided, and case studies emphasize the flexibility and high performance achieved on current GPU-based systems.Comment: 15 pages, 10 figures, 2 table

    Isolation Precautions for Visitors

    Get PDF
    Transmission of organisms within the hospital setting has become a topic of major concern not only for patients and healthcare facilities but also for government agencies and the general public. This increased awareness has occurred in part due to the spread of organisms that have limited treatment options, such as carbapenem-resistant Enterobacteriaceae (CRE), as well as the heightened recognition that many hospital-associated infections (HAIs) are preventable. A large body of literature shows that horizontal transmission of multidrug-resistant organisms involves the hands, and potentially the attire, of healthcare workers (HCWs). This evidence provides the rationale for the use of standard and contact isolation precautions among HCWs. However, the health risks to visitors and the role of visitors in the horizontal transmission of pathogens within acute care hospitals is not as clearly defined. Consequently, uncertainty remains regarding which precautions visitors should take when interacting with patients placed on isolation precautions. Frequent arguments against the use of isolation precautions among visitors include lack of visitor movement between patient rooms, the difficulty of educating visitors, and the difficulty of enforcing compliance with isolation practices

    Exebacase for Staphylococcus aureus bloodstream infection and endocarditis

    Get PDF
    BACKGROUND: Novel therapeutic approaches are critically needed for Staphylococcus aureus bloodstream infections (BSI), particularly for methicillin-resistant S. aureus (MRSA). Exebacase, a first-in-class antistaphylococcal lysin, is a direct lytic agent that is rapidly bacteriolytic, eradicates biofilms, and synergizes with antibiotics. METHODS: In this superiority-design study, we randomly assigned 121 patients with S. aureus BSI/endocarditis to receive a single dose of exebacase or placebo. All patients received standard-of-care antibiotics. The primary efficacy endpoint was clinical outcome (responder rate) at Day 14. RESULTS: Clinical responder rates at Day 14 were 70.4% and 60.0% in the exebacase + antibiotics and antibiotics alone groups, respectively (difference=10.4, 90% CI [-6.3, 27.2], p-value=0.31), and were 42.8 percentage points higher in the pre-specified exploratory MRSA subgroup (74.1% vs. 31.3%, difference=42.8, 90% CI [14.3, 71.4], ad hoc p value=0.01). Rates of adverse events (AEs) were similar in both groups. No AEs of hypersensitivity to exebacase were reported. Thirty-day all-cause mortality rates were 9.7% and 12.8% in the exebacase + antibiotics and antibiotics alone groups, respectively, with a notable difference in MRSA (3.7% vs. 25.0%, difference= -21.3, 90% CI [-45.1, 2.5], ad hoc p-value=0.06). Among MRSA patients in the United States, median length-of-stay was 4-days shorter and 30-day hospital readmission rates were 48 percentage points lower in the exebacase-treated group compared with antibiotics alone. CONCLUSIONS: This study establishes proof-of-concept for exebacase and direct lytic agents as potential therapeutics and supports conduct of a confirmatory study focused on exebacase to treat MRSA BSI

    Vaccine development in Staphylococcus aureus: taking the biofilm phenotype into consideration

    Get PDF
    Vaccine development against pathogenic bacteria is an imperative initiative as bacteria are gaining resistance to current antimicrobial therapies and few novel antibiotics are being developed. Candidate antigens for vaccine development can be identified by a multitude of high-throughput technologies that were accelerated by access to complete genomes. While considerable success has been achieved in vaccine development against bacterial pathogens, many species with multiple virulence factors and modes of infection have provided reasonable challenges in identifying protective antigens. In particular, vaccine candidates should be evaluated in the context of the complex disease properties, whether planktonic (e.g. sepsis and pneumonia) and/or biofilm associated (e.g. indwelling medical device infections). Because of the phenotypic differences between these modes of growth, those vaccine candidates chosen only for their efficacy in one disease state may fail against other infections. This review will summarize the history and types of bacterial vaccines and adjuvants as well as present an overview of modern antigen discovery and complications brought about by polymicrobial infections. Finally, we will also use one of the better studied microbial species that uses differential, multifactorial protein profiles to mediate an array of diseases, Staphylococcus aureus, to outline some of the more recently identified problematic issues in vaccine development in this biofilm-forming species

    Advanced Preparation Makes Research in Emergencies and Isolation Care Possible: The Case of Novel Coronavirus Disease (COVID-19)

    Get PDF
    The optimal time to initiate research on emergencies is before they occur. However, timely initiation of high-quality research may launch during an emergency under the right conditions. These include an appropriate context, clarity in scientific aims, preexisting resources, strong operational and research structures that are facile, and good governance. Here, Nebraskan rapid research efforts early during the 2020 coronavirus disease pandemic, while participating in the first use of U.S. federal quarantine in 50 years, are described from these aspects, as the global experience with this severe emerging infection grew apace. The experience has lessons in purpose, structure, function, and performance of research in any emergency, when facing any threat
    corecore