5 research outputs found

    Cpd-1 Null Mice Display a Subtle Neurological Phenotype

    Get PDF
    CPD1 (also known as ANP32-E) belongs to a family of evolutionarily conserved acidic proteins with leucine rich repeats implicated in a variety of cellular processes regulating gene expression, vesicular trafficking, intracellular signaling and apoptosis. Because of its spatiotemporal expression pattern, CPD1 has been proposed to play an important role in brain morphogenesis and synaptic development.We have generated CPD1 knock-out mice that we have subsequently characterized. These mice are viable and fertile. However, they display a subtle neurological clasping phenotype and mild motor deficits.CPD1 is not essential for normal development; however, it appears to play a role in the regulation of fine motor functions. The minimal phenotype suggests compensatory biological mechanisms

    Comparison of biomarker assays for EGFR:Implications for precision medicine in patients with glioblastoma

    No full text
    PURPOSE: Patients with glioblastoma (GBM) have a poor prognosis and are in desperate need of better therapies. As therapeutic decisions are increasingly guided by biomarkers, and EGFR abnormalities are common in GBM, thus representing a potential therapeutic target, we systematically evaluated methods of assessing EGFR amplification by multiple assays. Specifically, we evaluated correlation between fluorescence in situ hybridization (FISH), a standard assay for detecting EGFR amplification, with other methods. EXPERIMENTAL DESIGN: Formalin-fixed, paraffin-embedded tumor samples were used for all assays. EGFR amplification was detected using FISH (N = 206) and whole exome sequencing (WES, N = 74). EGFR mRNA expression was measured using reverse transcription-polymerase chain reaction (RT-PCR, N = 206) and transcriptome profiling (RNAseq, N = 64). EGFR protein expression was determined by immunohistochemistry (IHC, N = 34). Significant correlations between various methods were determined using Cohen’s kappa (κ = 0.61 – 0.80 defines substantial agreement) or R(2) statistics. RESULTS: EGFR mRNA expression levels by RNAseq and RT-PCR were highly correlated with EGFR amplification assessed by FISH (κ = 0.702). High concordance was also observed when comparing FISH to WES (κ = 0.739). RNA expression was superior to protein expression in delineating EGFR amplification. CONCLUSIONS: Methods for assessing EGFR mRNA expression (RT-PCR, RNAseq) and copy number (WES), but not protein expression (IHC), can be used as surrogates for EGFR amplification (FISH) in GBM. Collectively, our results provide enhanced understanding of available screening options for patients, which may help guide EGFR-targeted therapy approaches

    Neuronal Differentiation Is Regulated by Leucine-rich Acidic Nuclear Protein (LANP), a Member of the Inhibitor of Histone Acetyltransferase Complex*S⃞

    No full text
    Neuronal differentiation is a tightly regulated process characterized by temporal and spatial alterations in gene expression. A number of studies indicate a significant role for histone acetylation in the regulation of genes involved in development. Histone acetylation is regulated by histone deacetylases and histone acetyltransferases. Recent findings suggest that these catalytic activities, in turn, are modulated by yet another set of regulators. Of considerable interest in this context is the possible role of the INHAT (inhibitor of histone acetyltransferase) complex, comprised of a group of acidic proteins that suppress histone acetylation by a novel “histone-masking” mechanism. In this study, we specifically examined the role of the leucine-rich acidic nuclear protein (LANP), a defining member of the INHAT complex whose expression is tightly regulated in neuronal development. We report that depleting LANP in neuronal cell lines promotes neurite outgrowth by inducing changes in gene expression. In addition, we show that LANP directly regulates expression of the neurofilament light chain, an important neuron-specific cytoskeletal gene, by binding to the promoter of this gene and modulating histone acetylation levels. Finally, we corroborated our findings in vivo by demonstrating increased neurite outgrowth in primary neurons obtained from LANP null mice, which is also accompanied by increased histone acetylation at the NF-L promoter. Taken together, these results implicate INHATs as a distinct class of developmental regulators involved in the epigenetic modulation of neuronal differentiation
    corecore