49 research outputs found

    Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer

    Get PDF
    Silicon-based nanoparticles are ideally suited for use as biomedical imaging agents due to their biocompatibility, biodegradability, and simple surface chemistry that facilitates drug loading and targeting. A method of hyperpolarizing silicon particles using dynamic nuclear polarization, which increases magnetic resonance imaging signals by several orders-of-magnitude through enhanced nuclear spin alignment, has recently been developed to allow silicon particles to function as contrast agents for in vivo magnetic resonance imaging. The enhanced spin polarization of silicon lasts significantly longer than other hyperpolarized agents (tens of minutes, wherea

    Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER

    Get PDF
    MicroRNAs are small regulatory RNAs that post-transcriptionally control gene expression. Reduced expression of DICER, the enzyme involved in microRNA processing, is frequently observed in cancer and is associated with poor clinical outcome in various malignancies. Yet the underlying mechanisms are not well understood. Here, we identify tumor hypoxia as a regulator of DICER expression in large cohorts of breast cancer patients. We show that DICER expression is suppressed by hypoxia through an epigenetic mechanism that involves inhibition of oxygen-dependent H3K27me3 demethylases KDM6A/B and results in silencing of the DICER promoter. Subsequently, reduced miRNA processing leads to derepression of the miR-200 target ZEB1, stimulates the epithelial to mesenchymal transition and ultimately results in the acquisition of stem cell phenotypes in human mammary epithelial cells. Our study uncovers a previously unknown relationship between oxygen-sensitive epigenetic regulators, miRNA biogenesis and tumor stem cell phenotypes that may underlie poor outcome in breast cancer

    Paraneoplastic thrombocytosis in ovarian cancer

    Get PDF
    <p>Background: The mechanisms of paraneoplastic thrombocytosis in ovarian cancer and the role that platelets play in abetting cancer growth are unclear.</p> <p>Methods: We analyzed clinical data on 619 patients with epithelial ovarian cancer to test associations between platelet counts and disease outcome. Human samples and mouse models of epithelial ovarian cancer were used to explore the underlying mechanisms of paraneoplastic thrombocytosis. The effects of platelets on tumor growth and angiogenesis were ascertained.</p> <p>Results: Thrombocytosis was significantly associated with advanced disease and shortened survival. Plasma levels of thrombopoietin and interleukin-6 were significantly elevated in patients who had thrombocytosis as compared with those who did not. In mouse models, increased hepatic thrombopoietin synthesis in response to tumor-derived interleukin-6 was an underlying mechanism of paraneoplastic thrombocytosis. Tumorderived interleukin-6 and hepatic thrombopoietin were also linked to thrombocytosis in patients. Silencing thrombopoietin and interleukin-6 abrogated thrombocytosis in tumor-bearing mice. Anti–interleukin-6 antibody treatment significantly reduced platelet counts in tumor-bearing mice and in patients with epithelial ovarian cancer. In addition, neutralizing interleukin-6 significantly enhanced the therapeutic efficacy of paclitaxel in mouse models of epithelial ovarian cancer. The use of an antiplatelet antibody to halve platelet counts in tumor-bearing mice significantly reduced tumor growth and angiogenesis.</p> <p>Conclusions: These findings support the existence of a paracrine circuit wherein increased production of thrombopoietic cytokines in tumor and host tissue leads to paraneoplastic thrombocytosis, which fuels tumor growth. We speculate that countering paraneoplastic thrombocytosis either directly or indirectly by targeting these cytokines may have therapeutic potential. </p&gt

    Macrophages Facilitate Resistance to Anti-VEGF Therapy by Altered VEGFR Expression

    Get PDF
    Abstract Purpose: VEGF-targeted therapies have modest efficacy in cancerpatients, butacquiredresistance iscommon. Themechanisms underlying such resistance are poorly understood. Experimental Design: To evaluate the potential role of immune cells in the development of resistance to VEGF blockade, we first established a preclinical model of adaptive resistance to anti-VEGF therapy. Additional in vitro and in vivo studies were carried out to characterize the role of macrophages in such resistance. Results: Using murine cancer models of adaptive resistance to anti-VEGF antibody (AVA), we found a previously unrecognized roleofmacrophagesinsuchresistance.Macrophageswereactively recruited to the tumor microenvironment and were responsible for the emergence of AVA resistance. Depletion of macrophages following emergence of resistance halted tumor growth and prolonged survival of tumor-bearing mice. In a macrophagedeficient mouse model, resistance to AVA failed to develop, but could be induced by injection of macrophages. Downregulation of macrophage VEGFR-1 and VEGFR-3 expression accompanied upregulation of alternative angiogenic pathways, facilitating escape from anti-VEGF therapy. Conclusions: These findings provide a new understanding of the mechanisms underlying the modest efficacy of current antiangiogenesis therapies and identify new opportunities for combinationapproachesforovarianandothercancers. ClinCancerRes; 23(22); 7034–46. �2017 AACR

    Hematogenous Metastasis of Ovarian Cancer: Rethinking Mode of Spread

    Get PDF
    SummaryOvarian cancer has a clear predilection for metastasis to the omentum, but the underlying mechanisms involved in ovarian cancer spread are not well understood. Here, we used a parabiosis model that demonstrates preferential hematogenous metastasis of ovarian cancer to the omentum. Our studies revealed that the ErbB3-neuregulin 1 (NRG1) axis is a dominant pathway responsible for hematogenous omental metastasis. Elevated levels of ErbB3 in ovarian cancer cells and NRG1 in the omentum allowed for tumor cell localization and growth in the omentum. Depletion of ErbB3 in ovarian cancer impaired omental metastasis. Our results highlight hematogenous metastasis as an important mode of ovarian cancer metastasis. These findings have implications for designing alternative strategies aimed at preventing and treating ovarian cancer metastasis

    2′-OMe-phosphorodithioate-modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity

    Get PDF
    Improving small interfering RNA (siRNA) efficacy in target cell populations remains a challenge to its clinical implementation. Here, we report a chemical modification, consisting of phosphorodithioate (PS2) and 2′-O-Methyl (2′-OMe) MePS2 on one nucleotide that significantly enhances potency and resistance to degradation for various siRNAs. We find enhanced potency stems from an unforeseen increase in siRNA loading to the RNA-induced silencing complex, likely due to the unique interaction mediated by 2′-OMe and PS2. We demonstrate the therapeutic utility of MePS2 siRNAs in chemoresistant ovarian cancer mouse models via targeting GRAM domain containing 1B (GRAMD1B), a protein involved in chemoresistance. GRAMD1B silencing is achieved in tumours following MePS2-modified siRNA treatment, leading to a synergistic anti-tumour effect in combination with paclitaxel. Given the previously limited success in enhancing siRNA potency with chemically modified siRNAs, our findings represent an important advance in siRNA design with the potential for application in numerous cancer types

    Erythropoietin Stimulates Tumor Growth via EphB4

    Get PDF
    While recombinant human erythropoietin (rhEpo) has been widely used to treat anemia in cancer patients, concerns about its adverse effects on patient survival have emerged. A lack of correlation between expression of the canonical EpoR and rhEpo’s effects on cancer cells prompted us to consider the existence of an alternative Epo receptor. Here, we identified EphB4 as an Epo receptor that triggers downstream signaling via STAT3 and promotes rhEpo induced tumor growth and progression. In human ovarian and breast cancer samples, expression of EphB4 rather than the canonical EpoR correlated with decreased disease-specific survival in rhEpo-treated patients. These results identify EphB4 as a critical mediator of erythropoietin-induced tumor progression and further provide clinically significant dimension to the biology of erythropoietin

    HYPOXIA MEDIATED DOWNREGULATION OF MIRNA BIOGENESIS LEADS TO INCREASED TUMOR PROGRESSION

    Get PDF
    In recent years, there has been a growing recognition of the importance of tumor associated microenvironment in the initiation and progression of tumors. However, a mechanistic understanding of the complicated biological interplay between the stromal framework and malignant regions of the tumor remains incompletely understood. In this study, we address mechanisms by which hypoxia in the tumor microenvironment leads to attenuation of miRNA biogenesis by downregulation of two key enzymes, Drosha and Dicer in cancer cells. Previous data from our laboratory had shown the clinical relevance of downregulated Dicer and Drosha in ovarian and other cancer types, but a clear mechanistic understanding is needed for future clinical intervention strategies to curb deleterious effect of miRNA biogenesis downregulation. Using several in vitro techniques, orthotopic in vivo models and clinical patient samples, we demonstrate novel deregulatory mechanisms involved in Dicer and Drosha downregulation under hypoxia. Data from deep sequencing of normoxia and hypoxia treated cells demonstrate clear effect of this downregulation on miRNA maturation. Collectively, we show substantial functional effects of this downregulation on cancer progression under in vivo conditions by use of siRNAs incorporated in liposomes mediated gene silencing. Our work will provide the missing links for this mechanistic understanding, with a goal of novel interventions to rescue the Dicer and Drosha-miRNA biogenesis pathway. The findings described in this thesis have significant clinical implications with respect to understanding mechanisms of tumor growth and metastasis and the design of new therapeutic approaches in cancers

    Pan-cancer genomic analysis links 3'UTR DNA methylation with increased gene expression in T cells

    No full text
    Background: Investigations into the function of non-promoter DNA methylation have yielded new insights into the epigenetic regulation of gene expression. However, integrated genome-wide non-promoter DNA methylation and gene expression analyses across a wide number of tumour types and corresponding normal tissues have not been performed.Methods: To investigate the impact of non-promoter DNA methylation on cancer pathogenesis, we performed a large-scale analysis of gene expression and DNA methylation profiles, finding enrichment in the 3'UTR DNA methylation positively correlated with gene expression. Filtering for genes in which 3'UTR DNA methylation strongly correlated with gene expression yielded a list of genes enriched for functions involving T cell activation.Findings: The important immune checkpoint gene Havcr2 showed a substantial increase in 3'UTR DNA methylation upon T cell activation and subsequent upregulation of gene expression in mice. Furthermore, this increase in Havcr2 gene expression was abrogated by treatment with decitabine.Interpretation: These findings indicate that the 3'UTR is a functionally relevant DNA methylation site. Additionally, we show a potential novel mechanism of HAVCR2 regulation in T cells, providing new insights for modulating immune checkpoint blockade. (C) 2019 The Authors. Published by Elsevier B.V
    corecore