176 research outputs found

    Syöpäkasvaimen verenkierto: syövän akilleenkantapää?

    Get PDF
    Syöpäkasvain käyttää paljon energiaa ja ravinteita. Saadakseen tyydytettyä nämä tarpeet, syöpäkasvain tarvitsee tehokkaan verenkierron. Viimeaikainen tutkimus on osoittanut, että tämä verenkierron tarve voi olla heikko kohta syövän muutoin vaikeasti läpäistävässä varustuksessa. Uusia, tähän oivallukseen perustuvia hoitomenetelmiä kokeillaan laboratorioissa ja jossain määrin myös jo potilaiden hoidossa

    Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus.

    Get PDF
    The incidence of adverse effects and pathogen resistance encountered with small molecule antibiotics is increasing. As such, there is mounting focus on immunogene therapy to augment the immune system's response to infection and accelerate healing. A major obstacle to in vivo gene delivery is that the primary uptake pathway, cellular endocytosis, results in extracellular excretion and lysosomal degradation of genetic material. Here we show a nanosystem that bypasses endocytosis and achieves potent gene knockdown efficacy. Porous silicon nanoparticles containing an outer sheath of homing peptides and fusogenic liposome selectively target macrophages and directly introduce an oligonucleotide payload into the cytosol. Highly effective knockdown of the proinflammatory macrophage marker IRF5 enhances the clearance capability of macrophages and improves survival in a mouse model of Staphyloccocus aureus pneumonia

    Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance

    Get PDF
    In order to understand the role of plasma proteins in the rapid liver clearance of dextran-coated superparamagnetic iron oxide (SPIO) in vivo, we analyzed the full repertoire of SPIO-binding blood proteins using novel two-dimensional differential mass spectrometry approach. The identified proteins showed specificity for surface domains of the nanoparticles: mannan-binding lectins bound to the dextran coating, histidine-rich glycoprotein and kininogen bound to the iron oxide part, and the complement lectin and contact clotting factors were secondary binders. Nanoparticle clearance studies in knockout mice suggested that these proteins, as well as several previously identified opsonins, do not play a significant role in the SPIO clearance. However, both the dextran coat and the iron oxide core remained accessible to specific probes after incubation of SPIO in plasma, suggesting that the nanoparticle surface could be available for recognition by macrophages, regardless of protein coating. These data provide guidance to rational design of bioinert, long-circulating nanoparticles.National Cancer Institute (U.S.) (Grant CA119335)National Cancer Institute (U.S.) (Grant CA124427

    The alpha v beta 1 integrin functions as a fibronectin receptor but does not support fibronectin matrix assembly and cell migration on fibronectin

    Get PDF
    The fibronectin receptor, alpha 5 beta 1, has been shown to be required for fibronectin matrix assembly and plays an important role in cell migration on fibronectin. However, it is not clear whether other fibronectin binding integrins can take the place of alpha 5 beta 1 during matrix assembly and cell migration. To test this, we expressed the human alpha v subunit in the CHO cell line CHO-B2 that lacks the alpha 5 subunit. We found that the human alpha v combined with CHO cell beta 1 to form the integrin alpha v beta 1. Cells that expressed alpha v beta 1 attached to and spread well on fibronectin-coated dishes, but did so less well on vitronectin-coated dishes. This, along with other data, indicated that alpha v beta 1 functions as a fibronectin receptor in CHO-B2 cells. The alpha v beta 1-expressing cells failed to produce a fibronectin matrix or to migrate on fibronectin, although the same cells transfected with alpha 5 do produce a matrix and migrate on fibronectin. The affinity of the alpha v beta 1-expressing cells for fibronectin was fourfold lower than that of the alpha 5 beta 1- expressing cells. In addition, alpha v beta 1 was distributed diffusely throughout the cell surface, whereas alpha 5 beta 1 was localized to focal adhesions when cells were seeded onto fibronectin-coated surfaces. Thus, of the two fibronectin receptors, alpha v beta 1 and alpha 5 beta 1, only alpha 5 beta 1 supports fibronectin matrix assembly and promotes cell migration on fibronectin in the CHO-B2 cells. Possible reasons for this difference in the activities of alpha v beta 1 and alpha 5 beta 1 include the lower affinity of alpha v beta 1 for fibronectin and the failure of this integrin to localize in adhesion plaques on a fibronectin substrate. These results show that two integrins with similar ligand specificities and cell attachment functions may be quite different in their ability to support fibronectin matrix assembly and cell motility on fibronectin

    Metastasis of Tumor Cells Is Enhanced by Downregulation of Bit1

    Get PDF
    Resistance to anoikis, which is defined as apoptosis induced by loss of integrin-mediated cell attachment to the extracellular matrix, is a determinant of tumor progression and metastasis. We have previously identified the mitochondrial Bit1 (Bcl-2 inhibitor of transcription) protein as a novel anoikis effector whose apoptotic function is independent from caspases and is uniquely controlled by integrins. In this report, we examined the possibility that Bit1 is suppressed during tumor progression and that Bit1 downregulation may play a role in tumor metastasis.Using a human breast tumor tissue array, we found that Bit1 expression is suppressed in a significant fraction of advanced stages of breast cancer. Targeted disruption of Bit1 via shRNA technology in lowly aggressive MCF7 cells conferred enhanced anoikis resistance, adhesive and migratory potential, which correlated with an increase in active Extracellular kinase regulated (Erk) levels and a decrease in Erk-directed phosphatase activity. These pro-metastasis phenotypes were also observed following downregulation of endogenous Bit1 in Hela and B16F1 cancer cell lines. The enhanced migratory and adhesive potential of Bit1 knockdown cells is in part dependent on their high level of Erk activation since down-regulating Erk in these cells attenuated their enhanced motility and adhesive properties. The Bit1 knockdown pools also showed a statistically highly significant increase in experimental lung metastasis, with no differences in tumor growth relative to control clones in vivo using a BALB/c nude mouse model system. Importantly, the pulmonary metastases of Bit1 knockdown cells exhibited increased phospho-Erk staining.These findings indicate that downregulation of Bit1 conferred cancer cells with enhanced anoikis resistance, adhesive and migratory properties in vitro and specifically potentiated tumor metastasis in vivo. These results underscore the therapeutic importance of restoring Bit1 expression in cancer cells to circumvent metastasis at least in part through inhibition of the Erk pathway

    Nanoparticles that communicate in vivo to amplify tumour targeting

    Get PDF
    Author Manuscript: 2012 May 29Nanomedicines have enormous potential to improve the precision of cancer therapy, yet our ability to efficiently home these materials to regions of disease in vivo remains very limited. Inspired by the ability of communication to improve targeting in biological systems, such as inflammatory-cell recruitment to sites of disease, we construct systems where synthetic biological and nanotechnological components communicate to amplify disease targeting in vivo. These systems are composed of ‘signalling’ modules (nanoparticles or engineered proteins) that target tumours and then locally activate the coagulation cascade to broadcast tumour location to clot-targeted ‘receiving’ nanoparticles in circulation that carry a diagnostic or therapeutic cargo, thereby amplifying their delivery. We show that communicating nanoparticle systems can be composed of multiple types of signalling and receiving modules, can transmit information through multiple molecular pathways in coagulation, can operate autonomously and can target over 40 times higher doses of chemotherapeutics to tumours than non-communicating controls.National Cancer Institute (U.S.) (SBMRI Cancer Center Support Grant 5 P30 CA30199-28)National Cancer Institute (U.S.) (MIT CCNE Grant U54 CA119349)National Cancer Institute (U.S.) (Bioengineering Research Partnership Grant 5-R01-CA124427)National Cancer Institute (U.S.) (UCSD CCNE Grant U54 CA 119335)National Science Foundation (U.S.) (Whitaker Graduate Fellowship
    • …
    corecore