41 research outputs found

    Three-phase optimal power flow for networked microgrids based on semidefinite programming convex relaxation

    Get PDF
    Many autonomous microgrids have extensive penetration of distributed generation (DG). Optimal power flow (OPF) is necessary for the optimal dispatch of networked microgrids (NMGs). Existing convex relaxation methods for three-phase OPF are limited to radial networks. In light of this, we develop a semidefinite programming (SDP) convex relaxation model which can cope with meshed networks and also includes a model of three-phase DG and under-load voltage regulators with different connection types. The SDP model solves the OPF problem of multi-phase meshed network effectively, with satisfactory accuracy, as validated by real 6-bus, 9-bus, and 30-bus NMGs, and the IEEE 123-bus test cases. In the SDP model, the convex symmetric component of the three-phase DG model is demonstrated to be more accurate than a three-phase DG modelled as three single-phase DG units in three-phase unbalanced OPF. The proposed method also has higher accuracy than the existing convex relaxation methods. The resultant optimal control variables obtained from the convex relaxation optimization can be used for both final optimal dispatch strategy and initial value of the non-convex OPF to obtain the globally optimal solution efficiently

    Polymeric 2,6-bis(benzimidazol-2-yl)pyridine -RuCl3 complex as a catalyst for the aerobic oxidative self-condensation of amines to imines

    Get PDF
    A polymer ruthenium complex pbbp-RuCl3 has been easily synthesized from the direct coordination of RuCl3 with polymer constituted by tridentate 2,6-bis(benzimidazol-2-yl)pyridine unit (pbbp). As a heterogeneous catalyst, pbbp-RuCl3 showed high efficiency in aerobic oxidative self-condensation of primary amines to imines. This heterogeneous catalyst can be easily recovered and exhibits good reusability in the reaction

    Gene expression analysis of induced pluripotent stem cells from aneuploid chromosomal syndromes

    Get PDF
    BACKGROUND: Human aneuploidy is the leading cause of early pregnancy loss, mental retardation, and multiple congenital anomalies. Due to the high mortality associated with aneuploidy, the pathophysiological mechanisms of aneuploidy syndrome remain largely unknown. Previous studies focused mostly on whether dosage compensation occurs, and the next generation transcriptomics sequencing technology RNA-seq is expected to eventually uncover the mechanisms of gene expression regulation and the related pathological phenotypes in human aneuploidy. RESULTS: Using next generation transcriptomics sequencing technology RNA-seq, we profiled the transcriptomes of four human aneuploid induced pluripotent stem cell (iPSC) lines generated from monosomy × (Turner syndrome), trisomy 8 (Warkany syndrome 2), trisomy 13 (Patau syndrome), and partial trisomy 11:22 (Emanuel syndrome) as well as two umbilical cord matrix iPSC lines as euploid controls to examine how phenotypic abnormalities develop with aberrant karyotype. A total of 466 M (50-bp) reads were obtained from the six iPSC lines, and over 13,000 mRNAs were identified by gene annotation. Global analysis of gene expression profiles and functional analysis of differentially expressed (DE) genes were implemented. Over 5000 DE genes are determined between aneuploidy and euploid iPSCs respectively while 9 KEGG pathways are overlapped enriched in four aneuploidy samples. CONCLUSIONS: Our results demonstrate that the extra or missing chromosome has extensive effects on the whole transcriptome. Functional analysis of differentially expressed genes reveals that the genes most affected in aneuploid individuals are related to central nervous system development and tumorigenesis

    Control of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs films

    Get PDF
    Using x-ray magnetic circular and linear dichroism techniques, we demonstrate a collinear exchange coupling between an epitaxial antiferromagnet, tetragonal CuMnAs, and an Fe surface layer. A small uncompensated Mn magnetic moment is observed which is antiparallel to the Fe magnetization. The staggered magnetization of the 5 nm thick CuMnAs layer is rotatable under small magnetic fields, due to the interlayer exchange coupling. This allows us to obtain the x-ray magnetic linear dichroism spectra for different crystalline orientations of CuMnAs in the (001) plane. This is a key parameter for enabling the understanding of domain structures in CuMnAs imaged using x-ray magnetic linear dichroism microscopy techniques

    Simulations of Different P-values Combination Methods Using SNPs on Diverse Biology Levels

    No full text
    The method of combination p-values from multiple tests is the foundation for some studies like meta-analysis and detection of signal. There are tremendous methods have been developed and applied like minimum p-values, Cauchy Combination, goodness-of-fit combination and Fisher's combination. In this paper, I tested their ability to detect signals which is related to real case in biology to find out significant single-nucleotide polymorphisms (SNPs). I simulated p-values for SNPs logistics regression model and test 7 combination methods' power performance in different setting conditions. I compared sparse or dense signals, dependent or independent and combine them in gene-level or pathway-level. One method based on Fisher's combination called Omni-TFisher is ideal for most of the situations. Recent years, genome-wide association studies (GWASs) focused on BMD-related SNPs at gene significance level. In this paper I used Omni-TFisher to analyses real data on haplotype blocks. As a result, haplotype blocks can find more SNPs in non-coding and intergeneric regions than gene-based and save computational complexity. It finds out not only known genes, but also other genes need further verification
    corecore