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Three-Phase Optimal Power Flow for Networked Microgrids 

Based on Semidefinite Programming Convex Relaxation 

Yan Huang; Yuntao Ju; Kang Ma; Michael Short; Tao Chen; Ruosi Zhang; Yi Lin 

 
 

Abstract 

Many autonomous microgrids have high penetration of distributed generation (DG) units. Optimal power flow 

(OPF) is necessary for the optimal dispatch of such networked microgrids (NMGs). Existing convex relaxation 

methods for three-phase OPF are only applicable to radial networks, not meshed networks. To overcome this 

limitation, we develop a semidefinite programming (SDP) convex relaxation model, which can be applied to 

meshed networks and also includes a model of three-phase DG units and on-load voltage regulators with 

different connection types. The proposed model has higher accuracy than other existing convex relaxation 

models and the SDP model effectively solves the OPF problem for three-phase meshed networks with 

satisfactory accuracy, as validated by real 6-bus, 9-bus, and 30-bus NMGs and the IEEE 123-bus test cases. 

In the SDP model, the convex symmetric-component of the three-phase DG model is shown to be more 

accurate than three-phase DG that is modelled as three single-phase DG units in three-phase unbalanced OPF. 

The optimal control variables obtained from the convex relaxation optimization can be used for both the final 

optimal dispatch strategy and the initial value of non-convex OPF to obtain the globally optimal solution 

efficiently.  

 

Keywords: networked microgrids; semidefinite programming; optimal power flow; distributed generation; 

meshed network  

 

1. Introduction 

Renewable energy resources for electricity generation, such as solar photovoltaics and wind turbines, are 

being widely adopted. Energy sources are becoming increasingly geographically dispersed, where traditional 

centralized power plants are being replaced by distributed generation (DG) units that runs on renewable sources 

[1]. The presence of DG units brings new characteristics and control complexity to these networks [2]. As 

renewable generation in the power system increases, microgrids and related technologies are attracting 
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increasing attention [3]. Networked microgrids (NMGs) interconnect multiple microgrids and provide methods 

to operate them in the form of clusters. This can improve the reliability of the power supply in distribution 

networks [4,5]. 

Optimal power flow (OPF) is necessary for the optimal power dispatch in NMGs [6–8]. The OPF problem 

is a notoriously difficult non-convex problem due to the large number of non-convex constraints. Reference [9] 

developed a chordal conversion method based on a convex iteration algorithm to solve the three-phase OPF 

problem, but the proposed convex iteration algorithm did not guarantee convergence to a globally optimal 

solution starting with an arbitrary initial point. Convex relaxation methods must be introduced to ensure the 

convergence of the iteration algorithm and the global optimality of the solution [10]. At present, convex 

relaxation theory [11,12] is widely used to solve the OPF problem. A relaxed convex problem can be solved 

relatively easily and reliably [13–15]. 

There exists three main convex relaxation methods: semidefinite programming (SDP), second-order cone 

programming (SOCP), and quadratic convex (QC) relaxation. Reference [16] developed an SDP method to 

solve the OPF problem using a primal-dual interior-point algorithm. In reference [17], sufficient conditions 

were given to ensure a feasible SDP solution based on the Karush–Kuhn–Tucker (KKT) conditions. 

Furthermore, reference [18] demonstrated that the SDP method was problematic and inaccurate in some 

scenarios, and suggested that the convex relaxation process should be improved. Reference [19] developed a 

method to solve rank-one SDP problems by introducing penalty terms. Reference [20,21] transformed a radial 

power flow problem into an SOCP formulation, and solved the latter using an SOCP interior-point algorithm. 

In references [22,23], the characteristics and applications of the SOCP and SDP relaxation methods were 

compared, and sufficient conditions for accurate relaxations were proposed. However, because of the 

computation burden caused by the SOCP and SDP, researchers proposed QC methods in polar form. Reference 

[24] developed a method to reduce the gap between the approximate solution of the QC relaxation and the 

globally optimal solution. This method could be easily applied to a mixed-integer nonlinear programming 

formulation to solve for optimal power dispatch due to the increased calculation efficiency over other relaxation 

methods, and the reduced dual gap. Reference [25] reformulated nonconvex constraints into linear constraints 

through QC relaxation, providing a tractable relaxed problem. 

Existing convex relaxation methods are mainly applied to transmission networks. Some studies focused on 

radial distribution networks, and fewer still have investigated meshed networks, such as NMGs. References 

[26,27] developed an SDP convex relaxation model that is applied to OPF for single-phase radial networks. The 

SDP model demonstrates good performance, but the model is not applicable to meshed networks. Reference 
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[28] introduced an SOCP convex relaxation model that is applied to OPF for active distribution networks. But 

the SOCP convex relaxation model is not applicable to meshed networks. 

 The challenge of convex relaxation methods is to ensure that the relaxed equations are equivalent to the 

original non-convex constraints. If the relaxation is not accurate, the optimal solution is not useful and cannot 

be reconciled with the original OPF solution. The rank-one constraint is a necessary condition for tight SDP 

relaxation. If the relaxed model satisfies the rank-one condition under some assumptions, the SDP relaxation is 

accurate and the solution is globally optimal to the original problem [29,30]. The SDP relaxation has been 

proven to be more accurate than SOCP and QC relaxations in most cases [10]. 

Due to the advantages of the mathematical properties of the SDP convex relaxation method over other 

relaxation methods, and a lack of previous work on OPF meshed networks, this paper develops an SDP convex 

relaxation model for three-phase NMGs, incorporating a three-phase DG model and on-load voltage regulators 

with different connection types. To summarize, this paper makes the following contributions: 

1) An SDP convex relaxation model for three-phase NMGs is developed, which can be used to solve the OPF 

problem for NMGs. The approach achieves global optimality and provides an optimal dispatch strategy for 

NMGs. 

2) Compared with the SDP convex relaxation model in reference [26], the model developed in this paper 

delivers greater accuracy. The reason for lower accuracy of the existing model in reference [26] is that the 

proposed semidefinite constraints are not equivalent to those in the original model.  

3) Compared with the three-phase DG modelled as three single-phase DG units in reference [31], the 

symmetric-component-based DG model applied in our method delivers better performance in three-phase 

unbalanced OPF. 

4) Our SDP model is suitable for the three-phase OPF problem for both meshed and radial networks, whereas 

the existing methods can only be used for radial networks. The case studies presented demonstrate the wide 

applicability and usability of the proposed model. 

The remainder of the paper is organized as follows: Section 2 introduces the SDP convex relaxation model 

of three-phase microgrids; Section 3 outlines the comparison between the proposed SDP and an existing SDP 

model; Section 4 introduces the distributed generation SDP model based on symmetric-component method; 

Section 5 presents case studies and discussions; and conclusions are summarized in Section 6. A flow chart of 

the paper organization is found in Fig. 1. 
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Fig. 1. Flowchart for the paper organization. 

2. SDP Convex Relaxation Model 

2.1. Objective Function 

In this paper, the objective function is to minimize the operation cost of NMGs, as shown below: 

  2
2 1 0

{ , , }

( )i i i i i
i G a b c

f a P a P a 

 

 
   
 
 

   (1) 

where f  indicates the operation cost of the power system; G  indicates the set of DG units; iP  is the active 

power on phase   (  A,B ,C   ) of the thi  DG unit; 2 1 0  i i ia , a , a  are the operation cost parameters for 

the thi  DG unit. 

The original OPF model has the same objective function as the SDP OPF model. In this paper, iP  in Eq. 

(8) corresponds to iGP  in Eq. (13); iGP  is a 3 1  matrix. 

In the SDP model, the variables are defined as follows. 
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Voltage variables: 

 1 2 1 2      
Habc abc abc abc abc abc

N NV U U U U U U       
         (2) 

where  represents the total number of system buses;  represents the voltage matrix variable of the SDP 

convex relaxation model, 1 1 1 1

Tabc a b cU U U U       , 2 2 2 2

Tabc a b cU U U U       , 
Tabc a b c

N N N NU U U U        

represents the three-phase voltage of st1  bus, nd2  bus and thN  bus, respectively; (.)H  denotes the conjugate 

transpose of (.) , and (.)T  denotes the transpose of (.) . 

Branch power variables: 

 1 1 1 2 ( 1)
a b c a c a b c

f f f f f R f Rf Rf RfP P P P P P P P P     (3) 

 1 1 1 2 ( 1)
a b c a c a b c

f f f f f R f Rf Rf RfQ Q Q Q Q Q Q Q Q     (4) 

 1 1 1 2 ( 1)
a b c a c a b c

t t t t t R t Rt Rt RtP P P P P P P P P     (5) 

 1 1 1 2 ( 1)
a b c a c a b c

t t t t t R t Rt Rt RtQ Q Q Q Q Q Q Q Q     (6) 

where R  indicates the total number of system branches; fP , fQ  indicates the active power and reactive 

power injected from the upstream bus of the branch, respectively; tP , tQ  indicates the active power and 

reactive power injected to the downstream bus of the branch, respectively; 1
a
fP  indicates, on phase a, the 

active power injected from the upstream bus of the st1  branch. Here, ,  f fP Q  corresponds to ,  ij ijp q  in Eq. 

(9), respectively; and ,  t tP Q  corresponds to ' ',  hi hip q  in Eq. (10), respectively. 

DG units power variables: 

 1 1 1 2 ( 1)
a b c a c a b c

g L L L LP P P P P P P P P     (7) 

 1 1 1 2 ( 1)
a b c a c a b c

g L L L LQ Q Q Q Q Q Q Q Q     (8) 

where L  indicates the total number of DG units in the system; ,  g gP Q  are the matrices of the active and 

reactive power of DG units, respectively; 1
aP  indicates the active power on phase a of the st1  DG units; and 

1
aQ  indicates the reactive power on phase a of the st1  DG units. 

2.2. The SDP Model for Three-Phase Branch 

N V
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b
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' ',ij ijp q' ',hi hip q ,p qjk jk

ii ii iiY G jB 

 

Fig. 2. Three-phase branch diagram. 

Fig. 2 presents the three-phase branch diagram. The original three-phase branch power flow constraints are 

formulated as follows: 

 
*

j ( ) ( )abc abc abc
ij ij i ij i jp q U Y U U    

      (9) 

 
*' 'j ( ) ( )abc abc abc

hi hi i hi i hp q U Y U U     
      (10) 

  | j |  ij ijS p q S    (11) 

  | |  ,  | |  abc abc
i jU U U U U U      (12) 

 ,G iG G G iG Gp p p q q q     (13) 

 ' *

: :

( )abc abc
iG hi ij iD i ii i

h h i j i j

p p p p U G U
 

         (14) 

 ' *

: :

( )abc abc
iG hi ij iD i ii i

h h i j i j

q q q q U B U
 

         (15) 

where ijp  and ijq  are the three-phase branch active and reactive power respectively from the thi  bus to thj  

bus; ,  iG iDp p  indicates the three-phase active power of the thi  DG units and the load active power of the thi  

bus, respectively; , iG iDq q  indicates the three-phase reactive power of the thi  DG units and the load reactive 

power of the thi  bus, respectively; ,  S S  represents the lower and upper limit of branch complex power, 

respectively; ijY  indicates the three-phase branch admittance from the thi  bus to the thj  bus;  ii iiG , B  

represents the shunt conductance and susceptance of the thi  bus, respectively; * denotes the complex conjugate; 

( )diag M  means taking the diagonal elements of matrix M  to form a vector matrix; M  and M  indicate the 

upper and lower limit of M , respectively;   denotes matrix operation,  A B  represents the one-to-one 
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multiplication of the elements in the corresponding position of matrix A  and matrix B . 

Next, the SDP convex relaxation technique is employed to relax Eq. (9). First, Eq. (9) is rewritten as follows: 

 *

j

j ( ( ))

j

a a aa ab ac aa a
ij ij ij ij ij ji i

b b b ba bb bc b b
ij ij i ij ij ij i j

c cc c ca cb cc c
i iij ij ij ij ij j

p q Y Y Y UU U

p q U Y Y Y U U

U Up q Y Y Y U

         
        
          
        
                 

 

    

  

 (16) 

Then, Eq. (16) is converted into the following form using the matrix computation theorem [32]: 

 

* * *

* * * *

* * *

j ( ) ( ) ( )

j ( ) ( ) ( ) ( )

( ) ( ) ( )j

                    ( )

Ta a a a a b a c
ij ij i i i i i i

b b b a b b b c
ij ij ij i i i i i i

c a c b c cc c
i i i i i iij ij

ij

p q U U U U U U

p q Y U U U U U U

U U U U U Up q

Y

   
   
    
   
     



        

         

       

* * *

* * * *

* * *

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

Ta a a b a c
i j i j i j

b a b b b c
i j i j i j

c a c b c c
i j i j i j

U U U U U U

U U U U U U

U U U U U U

 
 
 
 
 
 

       

        

       

 (17) 

To concisely describe the SDP model, four voltage intermediate variables are defined: 

 
( ) ( )

( ) ( )

abc abc H abc abc H
i i i j ii ij

abc abc H abc abc H
ji jjj i j j

U U U U v v
v

v vU U U U

   
         

    

    
 (18) 

where iiv , ijv , jiv  and jjv  are the voltage intermediate variables in the SDP model. They are also the 

submatrices of V  in Eq. (2). 

Eq. (17) is rewritten as: 

 * *j ( ) ( ) ( ) ( )T T
ij ij ij ii ij ijp q Y v Y v       (19) 

Next, the SDP model of three-phase branch-type constraints Eqs. (9)–(15) are derived: 

 

* *

' ' * *

' *

: :

'

: :

j ( ) ( ) ( ) ( )

j ( ) ( ) ( ) ( )

 | j |  

( )

0

,  

( ) ( )

T T
ij ij ij ii ij ij

T T
hi hi hi ih hi ii

ij ij

G iG G G iG G

T
iG hi ij iD ii ii

h h i j i j

iG hi ij iD
h h i j i j

p q Y v Y v

p q Y v Y v

S p q S

V diag V V

V

p p p q q q

p p p p G v

q q q q

 

 

   

    

  

 

   

   

  

 

 

  

  





*( ) ( )T
ii iiB v















 




 (20) 
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where ,V  V  indicates the upper and lower limit of the voltage magnitude in the SDP model, respectively; 

ihv  is the voltage intermediate variable in the SDP model, which is the submatrix of V  in Eq. (2). 

2.3. On-Load Voltage Regulators Model 

For the on-load voltage regulators, Y-Y and Y-Delta are representative connection types, and their SDP 

models are provided in this section. The SDP models of the Delta-Y and Delta-Delta connections are given in 

Appendix A. In the OPF model, the transformer ratio is a controllable variable, and it indicates the setting of 

the voltage regulator tap position under optimal operation [33]. 

The multiplication of variables will appear in the constraint equations, such as: 

 i jU =t U   (21) 

where iU , jU  represents the voltage on the primary and secondary sides of the voltage regulator, 

respectively; and t  indicates the transformer ratio. According to reference [34], Eq. (21) is relaxed as follows: 

 M

l l l l
i j j j

u u u u
i j j j

j l u l u
i j j j

u l u l
i j j j

U t U U t t U

U t U U t t U
tU

U t U U t t U

U t U U t t U

   

      

  


  

 

 


 

 

 (22) 

where ,  u lt t  indicates the upper and lower limit of variable t , respectively; and ,  u l
j jU U  indicates the upper 

and lower limit of variable jU , respectively. 

In this paper, the on-load voltage regulator is equivalent to an impedance in series with an ideal transformer. 

The three-phase internal impedance of the transformer is referred to the primary side, and the internal 

impedances all satisfy the branch power flow constraints, as shown in section 2.2. The convex relaxation models 

of the ideal transformer with different connection types are introduced as follows. 

2.3.1. Y-Y Connection Voltage Regulator SDP Model 
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1aU

1bU

1cU

2aU

a aR jX

b bR jX

c cR jX

1aS

1bS

1cS

2aS

2cS

2bS

2cU

2bU

 

Fig. 3. Y-Y connection type diagram of voltage regulator. 

Fig. 3 presents the Y-Y connection type. For the Y-Y connection voltage regulator in the original power flow 

constraints, the voltage and power relationships between the primary and the secondary sides are given by: 

 1 2

1 2

abc abcU T U

S S

 


 

 
 (23) 

where 1 1 1 1

Tabc a b cU U U U        and 2 2 2 2

Tabc a b cU U U U        are the complex voltages of the primary and 

secondary sides, respectively; 1S  and 2S  are the complex power on the primary and secondary sides, 

respectively; and T  is the three-phase transformer ratio and it is a  matrix. 

Using Eq. (22), Eq. (23) is relaxed as: 

 

   
     
     
     

2 2 2

1 2 2 2

1 2 2 2

1 2 2 2

1 2

( )l l l l
1

u u u u

l u l u

u l u l

u t u u t t u

u t u u t t u

u t u u t t u

u t u u t t u

S S

   

   

   

   
  

  

  

  

  

 (24) 

where 1 1 1( )abc abc Hu U U    and 2 2 2( )abc abc Hu U U    are voltage variables in the SDP model; 2 2,  u lu u  indicates 

the upper and lower limit of variable 2u , respectively; ( )Ht T T   is the transformer ratio. 

2.3.2. Y-Delta Connection Voltage Regulator SDP Model 

3 1
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1aU

1bU

1cU

1


bU

2


bU

3


bU

2aU

2cU

2bU

a aR jX

b bR jX

c cR jX

1aS

1bS

1cS

1bS

2bS

3bS

 

Fig. 4. Y-Delta connection type diagram of voltage regulator. 

Fig. 4 presents the Y-Delta connection type. In this case, the voltage and power relationships between the 

primary and the secondary sides are given by: 

 

1

2

1

abc
b

abc
b

b

U T U

U B U

S S

 
 
  

 

   (25) 

where 1 2 3

T

b b b bU U U U   
     represents the secondary line voltage;  is the transformation 

matrix; and  1 2 3

T

b b b bS S S S  represents the secondary branch complex power. 

Using Eq. (22), Eq. (25) is relaxed as: 

 

     
     
     
     

1

1

1

2
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u t u u t t u

u t u u t t u
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S S

   

   

   

   
 
  

  

  

  

  

 

 (26) 

where ( )H
b b bu U U    is line voltage in the SDP model; ,  u l

b bu u  indicates the upper and lower limit of variable 

bu , respectively. 

2.4. Three-Phase SDP OPF Model 

To summarize, the variables of the SDP OPF model are defined by:  (2), (3), (4), (5), (6), (7) and (8). The 

1 1 0

0 1 1

1 0 1

B

 
   
  
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objective function of the SDP OPF is: 
, , ,
, ,

min
g g f

t f t

V P Q P
P Q Q

(1), subject to: (20) and (24). 

2.5. Recover SDP OPF Results 

It is important to convert the SDP OPF results into the original OPF results. In the original OPF results, the 

voltage magnitudes of all buses are given by: 

 ˆˆ ( )optv diag V  (27) 

where ˆoptv  is the voltage magnitudes of all buses in the original OPF model; V̂  is the globally optimal 

voltage solution in the SDP model; ˆ( )diag V  means taking the diagonal elements of matrix V̂  to form a 

vector matrix. 
To demonstrate how the bus voltage angles are recovered from the SDP OPF results, the three-phase branch 

SDP model introduced in section 2.2 is taken as an example. 

To do the conversion, firstly, the voltage intermediate variable jiv  (given by Eq. (18)) in the SDP model is 

expanded as follows: 

 

* * *

* * *

* * *

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

a a a b a c
j i j i j i

b a b b b c
ji j i j i j i

c a c b c c
j i j i j i

U U U U U U

v U U U U U U

U U U U U U

 
 
 
 
 
 

       

       

       

 (28) 

Secondly, the angle difference between phase   of the thi  bus and phase   of the thj  bus is given by: 

 
*

*

Im[ ( ) ]
atan( )    { , , }

Re[ ( ) ]

j i
ij

j i

U U
a b c

U U

 


    
 

 
 (29) 

where ij
  is the angle difference between phase   of thi  bus and phase   of thj  bus; *Re[ ( ) ]j iU U   , 

*Im[ ( ) ]j iU U    represents the real and imaginary parts of *[ ( ) ]j iU U   , respectively. The phase angle 

difference between the head bus and the end bus of all branches can be obtained by applying Eq. (29).  

    The phase angle of the thj  bus is given by: 

     { , , }j i ij a b c         (30) 
    As the voltage angle of the slack bus is defined, the voltage angle of all other buses can be calculated.  

3. Comparison with an Existing SDP Model  

The SDP model proposed in reference [26] performs well in solving the OPF problem for a radial network, 

but it cannot be applied to a meshed network. In this section, the model developed in this paper is compared 
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with the SDP model proposed in reference [26] on a radial network. The numerical results are provided in 

section 5.1. The radial network case study presented in section 5.1 demonstrates that the SDP model developed 

in this paper delivers a higher accuracy and better performance when solving the OPF problem for a radial 

network. In addition, the SDP model was applied to solve the OPF for a meshed network. 

3.1. Model Comparison 

Take the three-phase branch-type model as an example; the SDP model proposed in reference [26] is shown 

as follows: 

 

: :

( ) ( ( ) ( ) )

( ) ( )

( ) , ( )

0
( )

H H H
jj ii ij ij ij ij ij ij ij

j jk ij ij ij
k j k i i j

ij

jk

ii ij

ii ij

H
ij ij

v v Z i Z S Z Z S

S diag S diag S Z i

S S S

S S S

v diag v v v diag v v

v S

S i

 

    

   



 

  
    

 
  
  

 
   

 (31) 

where ( )abc abc H
ii i iv U U    and ( )abc abc H

jj j jv U U    are voltage intermediate variables in the SDP model; 

( )abc H
ij i ijS U I    and ( )abc H

jk j jkS U I    represent the three-phase branch power from the thi  bus to the thj  

bus and the three-phase branch power from the thj  bus to the thk  bus, respectively; jS  represents the injection 

power of thj  bus; and ijZ  indicates the three-phase branch impedance from the thi  bus to the thj  bus. 

3.2. Discussion of Different SDP Models 

In terms of Eqs. (20) and (31), the difference between the two SDP models is mainly in the definition of 

variables. In the SDP model developed in this paper, the voltage variables Eq. (2) and branch power variables 

Eqs. (3)–(6) are global variables. For example, for a 30-bus three-phase system, the defined voltage variable is 

a matrix with a dimension of . The SDP model proposed in reference [26] defines variables according 

to the number of branches and buses. These variables are local ones, meaning that the matrix variables are 

defined for each bus and each branch. For example, for a 30-bus three-phase system, the defined voltage 

variables are 30 matrices with dimensions of . 

The semidefinite constraints of the two SDP models are different. In this paper, the semidefinite constraint 

90 90

3 3
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is presented as follows: 

 0V   (32) 

While in reference [26], the semidefinite constraint is presented as: 

 0
( )

ii ij

H
ij ij

v S

S i

 
  
 
 

 (33) 

In terms of Eqs. (32) and (33), Eq. (20) includes voltage variables for the entire system, while Eq. (31) is 

only a semidefinite constraint including local variables of each branch. The two types of semidefinite constraints 

are not the same and this explains why the two SDP models have different accuracies. The relaxation level of 

Eq. (32) is tighter and the corresponding SDP OPF is more accurate. 

For the radial network, the SDP model has been proven to be accurate for a few classes of optimization 

problems under a set of assumptions in references [29,30]. If the optimal solution V


 of the SDP model is a 

rank-one matrix, then there exists a complex vector U , which is a globally optimal solution to Eq. (2). For 

meshed networks, there is currently no strict proof of exactness. 

4. Distributed Generation SDP Model 

For the OPF problem of NMGs, it is necessary to consider the SDP model of DG units in detail. Storage 

systems and micro diesel generators can be modeled as a total P  and Q  controlled bus. Photovoltaic 

components are currently approximated as fixed generators, whose maximum real and reactive power 

generation can vary over time [31], which means the total P  and Q  of photovoltaic components are not 

controllable due to the intermittency of solar power. The following detailed convex relaxation process is 

obtained by analyzing the physical characteristics of DG units, and using the symmetric-component method 

[28,35] to handle the imbalance model. 

DG

1aU

1bU

1cU

1aI

1bI

1cI

dgaI dgbI dgcI

dgaU dgbU dgcU

2aI

2bI

2cI

2aU

2bU

2cU

 

Fig. 5. Typical structure of a DG unit connected to the grid. 
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Fig. 5 presents the diagram of a DG unit connected to a three-phase network. The DG unit has symmetric 

structural parameters, and usually uses the symmetric-component model. For a DG unit, the original constraints 

are as follows:  

 
seq abc

dgdg

seq abc
dgdg

U A U

I A I

  


 

 

 
 (34) 

where (0) (1) (2) Tseq
dg dg dg dgU U U U   
     represents zero-sequence, positive-sequence, and negative-sequence 

voltage components; (0) (1) (2) Tseq
dg dg dg dgI I I I   
     represents zero-sequence, positive-sequence, and negative-

sequence current components; 
Tabc a b c

dg dg dg dgU U U U   
     represents the three-phase voltage for DG unit; 

Tabc a b c
dg dg dg dgI I I I   
     represents the three-phase injected current for DG unit; and  is the 

symmetric-component transformation matrix; 
2

3
j

e


  . 

Here, because the DG units usually use a delta connection transformer to isolate the zero-sequence current, 

the zero-sequence injected current is zero, as shown below: 

 
(0)

(0)

Re( ) 0

Im( ) 0

dg

dg

I

I

 







 (35) 

where (0)Re( )dgI  and (0)Im( )dgI  represent the real and imaginary parts of the zero-sequence current (0)
dgI , 

respectively. 

If the DG units do not have negative-sequence current control [36], the relationship between the negative-

sequence voltage and current conforms to the impedance characteristic and is expressed as an impedance 

equation, as shown below: 

 

(2)
(2)

(2)

dg
dg

U
I

Z



  (36) 

where (2)
dgI  and (2)

dgU  represent the negative sequence current and negative sequence voltage, respectively, and 

(2)Z represents the negative impedance. 

In this paper, the bus connected to DG unit is equivalent to the total P  and Q  controlled bus, and the sum 

of the DG unit three-phase power is constant, as shown below: 

2

2

1 1 1
1

1
3

1

A  

 

 
 

  
 
 
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 
 *

total dg

abc abc
dg dg dg

S S

S U I

 

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


 (37) 

where dgS  represents the three-phase complex power vector of DG, and it is a 3 1  matrix. The notation 

( )dgS indicates the sum of all elements in matrix dgS ; totalS  represents the total injected complex power.  

In the SDP model, the variables of DG units are defined as follows: 

 

(0) (0) * (0) (1) * (0) (2) *

(1) (0) * (1) (1) * (1) (2) *

(2) (0) * (2) (1) * (2) (2) *

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

dg dg dg dg dg dg

DG dg dg dg dg dg dg

dg dg dg dg dg dg
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I I I I I I I

I I I I I I

 
   
  

     

     

     
 (38) 
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(1) (0) * (1) (1) * (1) (2) *
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( ) ( ) ( )
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 (39) 

 

(0) (0) * (0) (1) * (0) (2) *

(1) (0) * (1) (1) * (1) (2) *
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( ) ( ) ( )
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( ) ( ) ( )

dg dg dg dg dg dg

DG dg dg dg dg dg dg

dg dg dg dg dg dg

U I U I U I

S U I U I U I

U I U I U I

 
   
  

     

     

     
 (40) 

The notation [1,1]DGI  means the st1  row and st1  column of the matrix DGI . 

Then, Eqs. (35), (36) and (37) are relaxed as follows: 

 
 *(2) (2)

[1,1] 0

[3,3]
[3,3]

[1,1] [2,2] [3,3]

DG

DG
DG

DG DG DG total

I

U
I

Z Z
S S S S

 

 

   


 (41) 

where DGI , DGU  and DGS  are current, voltage and power variables respectively defined in the above SDP 

model. Eq. (41) describes the SDP model of DG units. 

5. Case Studies 

In this section, the SDP model developed in this paper is compared with the SDP model proposed in reference 

[26], first for a small-scale 6-bus radial network test case and thereafter on the 9-bus, 30-bus, and IEEE 123-

bus cases to verify the proposed SDP model. The calculation results of the SDP model are compared with those 

of the non-convex model to verify the correctness of the SDP model. The system structure and detailed 

parameters of the test cases were taken from [37]. Here, we use SDPT3 [38] to solve the SDP model and 

GAMS/SNOPT [39] version 24.7.4 to solve the non-convex model. 
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To perform error analysis on the SDP model, the maximum absolute error (MAE) and root mean squared error 

(RMSE) were selected as specifications. The MAE is the maximum absolute error of the bus voltage magnitude 

between the SDP model and the non-convex model. The RMSE is the standard deviation of the residuals, which 

are the differences between the values predicted by a model and the values observed [40]. In this paper, the 

predicted values and the observed values are the results obtained by the SDP model and non-convex model. 

The combination of these two specifications reasonably demonstrates the calculation accuracy of the SDP 

model. The two specifications are formulated as follows: 

 0MAE max{| | | |}   1,2,3...i iU U i     (42) 

 0 21
RMSE (| U | | U |)

N

i i
iN

     (43) 

where | |iU  represents the voltage magnitude of the thi  bus obtained using the SDP model; 0| |iU  represents the 

voltage magnitude of the thi  bus obtained using the non-convex model. In this paper, the operation cost 

parameters of DG units were set to 2 4a  , 1 1a   and 0 0a  . 

5.1. Case 1: 6-Bus Radial Test Case 

 

Fig. 6. Diagram of 6-bus three-phase radial network. 

Fig. 6 presents a schematic diagram of the 6-bus network. In this case, the objective function is to minimize 

the operation cost of the DG units connected to bus 5 and bus 6. Please refer to section 2.1 for a detailed 

description of the mathematical model. Bus 6 is a slack bus, and the rest are PQ buses. 

The SDP models developed in this paper and reference [26] are compared with the non-convex model. The 

results of each bus voltage magnitude and angle are shown below: 
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Fig. 7. Comparison of voltage calculation results for 6-bus case. 

“V-nonconvex” represents the voltage magnitude calculated using the nonconvex model. “V-sdp” and “V-

sdp-ref” represent the voltage magnitudes calculated using the SDP model developed in this paper and in 

reference [26], respectively. “ -nonconvex”, “ -sdp”, and “ -sdp-ref” represent the voltage phase angles 

calculated using the nonconvex model, the SDP model developed in this paper, and the SDP model developed 

in reference [26], respectively. For the results of the radial network in Fig. 7, both SDP models have high 

accuracy because the voltage magnitudes and phase angles of the two SDP models are approximately consistent 

with the results of the non-convex model. 

Table 1. Comparison of two SDP models calculation results for 6-bus case. 

Index Variable SDP SDP-ref 

MAE 

Voltage magnitude 82.00 10  59.02 10  

Active power of DG 71.80 10  61.67 10  

Reactive power of DG 61.13 10  31.90 10  

RMSE 

Voltage magnitude 81.34 10  57.71 10  

Active power of DG 88.05 10  77.47 10  

Reactive power of DG 76.72 10  31.20 10  

As shown in Table 1, compared with the calculation results from the non-convex model, the MAE and RMSE 

of the SDP model developed in this paper are smaller, which shows that the model reformulation is more 

accurate. 

  
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5.2. Case 2: 9-Bus Meshed Test Case 

In this section, we use a 9-bus multi-phase meshed network case to test the proposed SDP model. Fig. 8 

presents a diagram of the 9-bus meshed network. In this case, the objective function is to minimize the operation 

cost of the DG units connected to bus 5 and bus 7. Bus 8 and bus 5 are connected by a two-phase line segment 

and bus 9 and bus 4 are connected by a one-phase line segment.  

8

9

A、B

A

 

Fig. 8. Diagram of 9-bus multi-phase meshed network structure. 

The comparison between the SDP model calculation results and the non-convex model calculation results is 

as follows: 

 

Fig. 9. Comparison of voltage calculation results for 9-bus case. 

As shown in Fig. 9, the proposed SDP model also performs well in solving the OPF problem of the multi-

phase meshed network. 

Table 2. Analysis of calculation results for 9-bus meshed case compared with 6-bus radial case. 

Index Variable SDP for 9-bus meshed network SDP for 6-bus radial network 
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MAE 

Voltage magnitude 45.10 10  82.00 10  

Active power of DG 34.10 10  71.80 10  

Reactive power of DG 36.60 10  61.13 10  

RMSE 

Voltage magnitude 41.80 10  81.34 10  

Active power of DG 31.10 10  88.05 10  

Reactive power of DG 32.00 10  76.72 10  

Table 2 provides the performance specifications of the SDP model on the 9-bus three-phase meshed network, 

compared with those of the SDP model on the 6-bus radial network in section 5.1. These indicate that the 

proposed SDP model is sufficiently accurate to solve the OPF problem for the meshed networks. 

5.3. Case 3: 30-Bus Test Case 

In this section, we use a larger-scale meshed network to test the proposed SDP model. Fig. 10 presents a 

diagram of the 30-bus meshed network. In this case, the objective function is to minimize the operation cost of 

the DG units connected to bus 5, bus 7, bus 12, and bus 14.  

 

Fig. 10. Diagram of 30-bus three-phase meshed networks structure. 

The comparison between SDP model calculation results and non-convex model calculation results is as 

follows: 
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Fig. 11. Comparison of voltage calculation results for 30-bus case. 

Table 3. Analysis of SDP model calculation results for 30-bus case. 

Indicator Variable SDP 

MAE 

Voltage magnitude 45.96 10  

Active power of DG 45.23 10  

Reactive power of DG 31.39 10  

RMSE 

Voltage magnitude 41.32 10  

Active power of DG 56.59 10  

Reactive power of DG 42.90 10  

It can be concluded from Fig. 11 and Table 3 that the proposed SDP model is still applicable for large-scale 

NMGs and performs well. 

5.4. Case 4: 123-Bus Test Case 

Standard IEEE 123-bus networks including a variety of three-, two-, and one-phase lines were selected for 

the numerical tests. Only one of the original voltage regulators is considered to be operating using Y-Y 

connections; others are suppressed. The objective function is to minimize the operation cost of G1 connected 

to the slack bus. 

The comparison between SDP model calculation results and non-convex model calculation results is as 

follows: 

1 2 3 4 5 6 7 8 9 1011 12131415161718192021222324252627282930
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Fig. 12. Comparison of voltage calculation results for IEEE 123-bus case. 

Table 4. Analysis of SDP model calculation results for IEEE 123-bus case. 

Indicator Variable SDP 

MAE 

Voltage magnitude 31.48 10  

Active power of G1 61.94 10  

Reactive power of G1 63.38 10  

RMSE 

Voltage magnitude 48.08 10  

Active power of G1 71.66 10  

Reactive power of G1 72.23 10  

Fig. 12 and Table 4 present the performance of the SDP model for the IEEE 123-bus multi-phase network. 

These findings demonstrate that the proposed SDP model is sufficiently accurate to solve the OPF problems on 

larger-scale networks. 

5.5. Case 5: Comparison of Different DG Models 
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Fig. 13. Diagram of 7-bus three-phase meshed network. 

In this section, we analyze the influence of the symmetric-component DG units model and the independent 

control of the three-phase DG units model [41] on the OPF problem. The three-phase DG units represented with 

three single-phase DG units do not incorporate the operational constraints between each phase in reference [35]. 

The numerical test was performed on the 7-bus case using the proposed SDP model under three-phase balance 

and unbalanced conditions, respectively. Fig. 13 presents a diagram of the 7-bus meshed network. In this case, 

the objective function is to minimize the operation cost of the DG units connected to bus 5 and bus 7, and the 

three-phase constraints of DG units connected to bus 6 is relaxed according to the symmetric-component 

method introduced in section 4. The numerical results are as follows: 

 

 

Fig. 14. Comparison of voltage results under three-phase balance. 
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Fig. 15. Comparison of voltage results under three-phase unbalance. 

“DG-symmetric” and “DG-independent” represent the symmetric-component DG units model and the three-

phase DG model described with three single-phase DG units, respectively. From Fig. 14 and Fig. 15, we can 

see that using different DG units models has no effect on OPF results under the three-phase balance condition. 

However, under the three-phase unbalance condition, the OPF results are different. This demonstrates that a 

three-phase DG units replaced with three-independent single-phase DG units is not accurate for three-phase 

unbalanced OPF. 

6. Conclusions 

This paper develops a three-phase semidefinite programming (SDP) relaxation that generalizes the voltage 

constraints across the entire system, as opposed to merely across individual branches as has been done in 

previous literature. In the proposed SDP relaxation model, this paper models three-phase distributed generation 

(DG) units and on-load voltage regulators with different connection types. The proposed SDP relaxation model 

is a tighter relaxation that is more accurate compared to previous SDP models. The proposed model can be 

readily extended to three-phase meshed networks, whereas previous models are not applicable to meshed 

networks. Further, the symmetric-component-based model of DG units used in the proposed method is more 

accurate than the three-phase DG modeled with three single-phase DG units in existing literature.  

The proposed SDP optimal power flow (OPF) model converts the original non-convex problem into a convex 

problem. It guarantees global optimality of the relaxed model and it also means that the OPF can be solved 

reliably. The optimal solutions obtained from the proposed SDP model can guide the optimal dispatch of NMGs 

in real-time. This is important for the safe and optimal operation of the NMGs and it brings economic benefits.  
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In future research work, energy storage, voltage source converter and other components can be added into 

the SDP model.  
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Appendix A 

    This part mainly considers Delta-Delta and Delta-Y connection types, and their SDP models are given. 
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2bU

a aR jX
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Fig. A1. Delta-Delta connection type diagram of voltage regulator. 

    Fig. A1 presents the Delta-Delta connection type. In this case, the voltage and power relationships between 

the primary and the secondary sides are given by: 
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where 1 2 3B B B BU U U U   
    , 1 2 3b b b bU U U U   

     represents the primary and secondary line voltage, 

respectively; 

1 1 0

0 1 1

1 0 1

B

 
   
  

 is the transformation matrix; and  1 2 3B B B BS S S S , 

 1 2 3b b b bS S S S  represents the primary and secondary branch complex power, respectively.  

    Using Eq. (22), Eq. (A1) is relaxed as: 

 

     
     
     
     

1

2

l l l l
B b b b

u u u u
B b b b

l u l u
B b b b

u l u l
B b b b

H
B

H
b

B b

u t u u t t u

u t u u t t u

u t u u t t u

u t u u t t u

u B u B

u B u B

S S

   

   


  

   



 
  

  

  

  

  

 

 

 (A2) 

where 1 1 1( )abc abc Hu U U    and 2 2 2( )abc abc Hu U U    are voltages in the SDP model; ( )H
B B Bu U U   , 

( )H
b b bu U U    are line voltages in the SDP model; ,  u l

b bu u  indicates the upper and lower limit of bu , 

respectively. 
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Fig. A2. Delta-Y connection type diagram of voltage regulator. 

    Fig. A2 presents the Delta-Y connection type. In this case, the voltage and complex power relationships 

between the primary and the secondary sides are given by: 
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    Using Eq. (22), Eq. (A3) is relaxed as: 
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