95 research outputs found

    Real-World Repetition Estimation by Div, Grad and Curl

    Get PDF
    We consider the problem of estimating repetition in video, such as performing push-ups, cutting a melon or playing violin. Existing work shows good results under the assumption of static and stationary periodicity. As realistic video is rarely perfectly static and stationary, the often preferred Fourier-based measurements is inapt. Instead, we adopt the wavelet transform to better handle non-static and non-stationary video dynamics. From the flow field and its differentials, we derive three fundamental motion types and three motion continuities of intrinsic periodicity in 3D. On top of this, the 2D perception of 3D periodicity considers two extreme viewpoints. What follows are 18 fundamental cases of recurrent perception in 2D. In practice, to deal with the variety of repetitive appearance, our theory implies measuring time-varying flow and its differentials (gradient, divergence and curl) over segmented foreground motion. For experiments, we introduce the new QUVA Repetition dataset, reflecting reality by including non-static and non-stationary videos. On the task of counting repetitions in video, we obtain favorable results compared to a deep learning alternative

    Temperatuurverloop bij het stomen door een polypropeencircuit

    Get PDF

    Verruiming vruchtwisseling in relatie tot mineralenbenutting, bodemkwaliteit en bedrijfseconomie op akkerbouwbedrijven

    Get PDF
    Verruiming van de vruchtwisseling met meer graan is gunstig voor de bodemkwaliteit en vaak ook voor de mineralenbenutting, maar is ongunstig voor het economisch bedrijfsresultaat. Met name op bedrijven met pootgoedaardappelen zijn forse opbrengststijgingen nodig om het inkomensverlies te compenseren die op dit moment weinig realistisch lijken. In dergelijke situaties kan beter eerst worden gekeken naar alternatieve maatregelen zoals organische meststofkeuze, inwerken van stro en het telen van vroege rassen. Ook verruiming met vroeg geoogste bloembolgewassen of groenten of landruil met een melkveehouder kunnen aantrekkelijkere alternatieven zijn

    Cloth in the Wind: A Case Study of Physical Measurement through Simulation

    Get PDF
    For many of the physical phenomena around us, we have developed sophisticated models explaining their behavior. Nevertheless, measuring physical properties from visual observations is challenging due to the high number of causally underlying physical parameters -- including material properties and external forces. In this paper, we propose to measure latent physical properties for cloth in the wind without ever having seen a real example before. Our solution is an iterative refinement procedure with simulation at its core. The algorithm gradually updates the physical model parameters by running a simulation of the observed phenomenon and comparing the current simulation to a real-world observation. The correspondence is measured using an embedding function that maps physically similar examples to nearby points. We consider a case study of cloth in the wind, with curling flags as our leading example -- a seemingly simple phenomena but physically highly involved. Based on the physics of cloth and its visual manifestation, we propose an instantiation of the embedding function. For this mapping, modeled as a deep network, we introduce a spectral layer that decomposes a video volume into its temporal spectral power and corresponding frequencies. Our experiments demonstrate that the proposed method compares favorably to prior work on the task of measuring cloth material properties and external wind force from a real-world video.Comment: CVPR 2020. arXiv admin note: substantial text overlap with arXiv:1910.0786

    Identifying the connection between Roman Conceptions of ‘Pure Air’ and Physical and Mental Health in Pompeian Gardens (c. 150 BC-AD 79): A Multi-Sensory Approach to Ancient Medicine

    Get PDF
    Different genres of Roman literature commented on the relationship between the condition of the environment and physical and mental health. They often refer to clear, pure, or good air as a beneficial aspect of the environment. Yet, unlike fetid air, they provide few descriptions of what constituted healthy air quality. Moreover, aside from pointing out the association between the environment and bodily condition, the writers also did not explain precisely how the link between the two was made. This paper utilizes a comparative study of ancient literature and the archaeological remains of Roman gardens in Pompeii: archaeobotanical samples, fresco paintings, location, and surviving features. Three questions are addressed in this study: First, how did the Romans identify and define pure? Second, how did air connect to the body? Third, what were the qualities of pure air and how did they benefit the body? Not only was inhalation a means of linking air to the body, but the two were also related through sensory perception. I argue that sight, sound, and olfaction were used to identify the qualities of pure air. Through the sensory process of identification, the beneficial properties of pure air were, in accordance with ancient perceptions of sensory function, taken into the body and affected health. Thus, sensory perception acted as the bridge between the environment and health
    • …
    corecore