1,441 research outputs found

    On ultrafast magnetic flux dendrite propagation into thin superconducting films

    Full text link
    We suggest a new theoretical approach describing the velocity of magnetic flux dendrite penetration into thin superconducting films. The key assumptions for this approach are based upon experimental observations. We treat a dendrite tip motion as a propagating flux jump instability. Two different regimes of dendrite propagation are found. A fast initial stage is followed by a slow stage, which sets in as soon as a dendrite enters into the vortex-free region. We find that the dendrite velocity is inversely proportional to the sample thickness. The theoretical results and experimental data obtained by a magneto-optic pump-probe technique are compared and excellent agreement between the calculations and measurements is found.Comment: 4 pages, 4 figure

    The Mouse INO80 Chromatin-Remodeling Complex Is an Essential Meiotic Factor for Spermatogenesis1

    Get PDF
    The ability to faithfully transmit genetic information across generations via the germ cells is a critical aspect of mammalian reproduction. The process of germ cell development requires a number of large-scale modulations of chromatin within the nucleus. One such occasion arises during meiotic recombination, when hundreds of DNA double-strand breaks are induced and subsequently repaired, enabling the transfer of genetic information between homologous chromosomes. The inability to properly repair DNA damage is known to lead to an arrest in the developing germ cells and sterility within the animal. Chromatin-remodeling activity, and in particular the BRG1 subunit of the SWI/SNF complex, has been shown to be required for successful completion of meiosis. In contrast, remodeling complexes of the ISWI and CHD families are required for postmeiotic processes. Little is known regarding the contribution of the INO80 family of chromatin-remodeling complexes, which is a particularly interesting candidate due to its well described functions during DNA double-strand break repair. Here we show that INO80 is expressed in developing spermatocytes during the early stages of meiotic prophase I. Based on this information, we used a conditional allele to delete the INO80 core ATPase subunit, thereby eliminating INO80 chromatin-remodeling activity in this lineage. The loss of INO80 resulted in an arrest during meiosis associated with a failure to repair DNA damage during meiotic recombination

    Center of mass and relative motion in time dependent density functional theory

    Full text link
    It is shown that the exchange-correlation part of the action functional Axc[ρ(r,t)]A_{xc}[\rho (\vec r,t)] in time-dependent density functional theory , where ρ(r,t)\rho (\vec r,t) is the time-dependent density, is invariant under the transformation to an accelerated frame of reference ρ(r,t)ρ(r,t)=ρ(r+x(t),t)\rho (\vec r,t) \to \rho ' (\vec r,t) = \rho (\vec r + \vec x (t),t), where x(t)\vec x (t) is an arbitrary function of time. This invariance implies that the exchange-correlation potential in the Kohn-Sham equation transforms in the following manner: Vxc[ρ;r,t]=Vxc[ρ;r+x(t),t]V_{xc}[\rho '; \vec r, t] = V_{xc}[\rho; \vec r + \vec x (t),t]. Some of the approximate formulas that have been proposed for VxcV_{xc} satisfy this exact transformation property, others do not. Those which transform in the correct manner automatically satisfy the ``harmonic potential theorem", i.e. the separation of the center of mass motion for a system of interacting particles in the presence of a harmonic external potential. A general method to generate functionals which possess the correct symmetry is proposed

    Two Years after Coxiella burnetii Detection: Pathogen Shedding and Phase-Specific Antibody Response in Three Dairy Goat Herds.

    Get PDF
    The infection dynamics of Coxiella (C.) burnetii were investigated in three dairy goat herds (A, B, and C) 2 years after the first pathogen detection. A total of 28 and 29 goats from herds A and B, and 35 goats from herd C, were examined. Sera were analyzed on three sampling dates using phase-specific serology. Pathogen shedding was assessed using post-partum vaginal swabs and monthly bulk tank milk (BTM) samples. Dust samples from a barn and milking parlor were also collected monthly. These samples were analyzed with PCR (target IS1111). In herd A, individual animals tested seropositive, while vaginal swabs, BTM, and most dust samples tested negative. Herds B and C exhibited high IgG phase I activity, indicating a past infection. In herd B, approximately two-thirds of the goats shed C. burnetii with vaginal mucus, and irregular positive results were obtained from BTM. Herd C had two positive goats based on vaginal swabs, and BTM tested positive once. Dust samples from herds B and C contained C. burnetii DNA, with higher quantities typically found in samples from the milking parlor. This study highlights the different infection dynamics in three unvaccinated dairy goat herds and the potential use of dust samples as a supportive tool to detect C. burnetii at the herd level

    Excitation and relaxation in atom-cluster collisions

    Get PDF
    Electronic and vibrational degrees of freedom in atom-cluster collisions are treated simultaneously and self-consistently by combining time-dependent density functional theory with classical molecular dynamics. The gradual change of the excitation mechanisms (electronic and vibrational) as well as the related relaxation phenomena (phase transitions and fragmentation) are studied in a common framework as a function of the impact energy (eV...MeV). Cluster "transparency" characterized by practically undisturbed atom-cluster penetration is predicted to be an important reaction mechanism within a particular window of impact energies.Comment: RevTeX (4 pages, 4 figures included with epsf

    Exact exchange-correlation potential for a time-dependent two electron system

    Get PDF
    We obtain an exact solution of the time-dependent Schroedinger equation for a two-electron system confined to a plane by an isotropic parabolic potential whose curvature is periodically modulated in time. From this solution we compute the exact time-dependent exchange correlation potential v_xc which enters the Kohn-Sham equation of time-dependent density functional theory. Our exact result provides a benchmark against which various approximate forms for v_xc can be compared. Finally v_xc is separated in an adiabatic and a pure dynamical part and it is shown that, for the particular system studied, the dynamical part is negligible.Comment: 23 pages, 6 figure
    corecore