256 research outputs found

    Electro-optic modulation measurement technique and enhancement

    Get PDF

    Securing the Home Energy Management Platform

    Get PDF
    Energy management in households gets increasingly more attention in the struggle to integrate more sustainable energy sources. Especially in the electrical system, smart grid systems are envisioned to be part in the efforts towards a better utilisation of the energy production and distribution infrastructure. The Home Energy Management System (HEMS) is a critical infrastructure component in this endeavour. Its main goal is to enable energy services utilising smart devices in the households based on the interest of the residential consumers and external actors. With the role of being both an essential link in the communication infrastructure for balancing the electrical grid and a surveillance unit in private homes, security and privacy become essential to address. In this chapter, we identify and address potential threats Home Energy Management Platform (HEMP) developers should consider in the progress of designing architecture, selecting hardware and building software. Our approach starts with a general view of the involved stakeholders and the HEMS. Given the system overview, a threat model is constructed from the HEMP developer\u27s point of view. Based on the threats that have been detected, possible mitigation strategies are proposed taking into account the state of the art of technology for securing platforms

    Chapter Securing the Home Energy Management Platform

    Get PDF
    Recently, many efforts have been done to chemically functionalize sensors surface to achieve selectivity towards diagnostics targets, such as DNA, RNA fragments and protein tumoural biomarkers, through the surface immobilization of the related specific receptor. Especially, some kind of sensors such as microcantilevers (gravimetric sensors) and one-dimensional photonics crystals (optical sensors) able to couple Bloch surface waves are very sensitive. Thus, any kind of surface modifications devoted to functionalize them has to be finely controlled in terms of mass and optical characteristics, such as refractive index, to minimize the perturbation, on the transduced signal, that can affect the response sensitivity towards the detected target species

    Virtual Power Plant for Smart Grid Ready Buildings and Customers

    Get PDF
    This report contains a summary of results from the ForskEL project: Virtual Power Plant for Smart Grid Ready Buildings and Customers

    Automated Frequency Domain Decomposition for Operational Modal Analysis

    Get PDF

    Applications of Frequency Domain Curve-fitting in the EFDD Technique

    Get PDF

    Eliminating the Influence of Harmonic Components in Operational Modal Analysis

    Get PDF
    Operational modal analysis is used for determining the modal parameters of structures for which the input forces cannot be measured. However, the algorithms used assume that the input forces are stochastic in nature. While this is often the case for civil engineering structures, mechanical structures, in contrast, are subject inherently to deterministic forces due to the rotating parts in the machinery. These forces are seen as harmonic components in the responses, and their influence should be eliminated before extracting the modes in their vicinity. This paper describes a new method based on the well-known Enhanced Frequency Domain Decomposition (EFDD) technique for eliminating these harmonic components in the modal parameter extraction process. For assessing the quality of the method, various experiments were carried out where the results were compared with those obtained with pure stochastic excitation of the same structure. Good agreement was found and the method is shown to be an easy and robust tool for enhancing the EFDD technique for mechanical structures
    corecore