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Figure 1: Applying strain to crystalline silicon. a, Waveguide fabricated in the
top layer of an SOI wafer. b, The same waveguide with a straining layer deposited on
top. The straining layer breaks the inversion symmetry and induces a linear electro-
optic effect. This is figure 1 from the article published in Nature based on results from
this Ph.D. thesis.
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Abstract

The goal of this Ph.D. project was to realize a switch in poled silica
with a switching voltage below 300V. This goal was not accomplished.
A possible explanation for the very large, but decaying, poling effects
reported during the nineties is found experimentally for a sample with
cracks in the topcladding. From this it is concluded that the third-order
non-linear coefficient (x(3)) of silica is a factor of 10 too low for making
an interesting switch. To increase the poling induced nonlinearity, the
material x(3) must be enlarged. A possiblity is to use silicon rich nitride
(SRN) as core material, as a 5-fold increase of material non-linearity was
found for SRN, relative to the originally used core material Ge : SiON

A precision measurement method, which determines both Efozen—in,
x@ and x(® was developed. The method is applicable to all relevant
samples and the uncertainty of the obtained results is ~ 5%.

When investigating photonic crystal (PhC) waveguides it was dis-
covered that stress induces a significant electro-optic (E-O) coefficient in
silicon. It was also, for the first time experimentally, verified that the E-O
effect scales linearly with the group index, using a developed time-of-flight
measurement method. A world record for direct measured group index
(ng = 220) was obtained in a 20um long symmetric W1 PhC waveguide.

Steps were taken to transfer the discovered stress induced non-linearity
to a conventional index-guiding waveguide. When transfered, future mea-
surements will determine how large an E-O coefficient it is possible to
achieve in silicon by stress. It will also be determined if the induced E-O
coefficient remains at fast electrical modulations.
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Resumeé

Malet med dette Ph.D. projekt var at realisere en optisk kontakt i polet
glas (Si05), hvor der skal bruges mindre end 300V til at skifte kontakten.
Dette mal blev ikke naet. En maélig forklaring pa de hgje, men hurtigt
aftagende polingresultater publiceret i halvfemserne er fundet eksperi-
mentelt vha. en prgve med revner i topglasset. Ud fra dette konkluderes,
at tredjeordensulineariteten (X(?’)) af glas er en faktor 10 for lav til at
opna en interessant polet kontakt i Si0s. For at forgge den polinginduc-
erede ulinearitet skal materialekonstanten () forpges. En mulighed, som
blev fundet, er at anvende silicium rigt nitrid til kerneglasset, da det er 5
gange mere ulineart end det oprindeligt anvendte materiale Ge : StON.

Der blev udviklet en meget przecis malemetode, som kan bestemme
bade Efrozen—in, X2 og x®). Metoden kan bruges til maling pa alle
relevante prover og usikkerheden af de malte resultater er ~ 5%.

Da fotoniske krystalbglgeledere blev undersggt, blev der gjort en vi-
denskabelig opdagelse, nemlig at stress inducerer en betydelig elektro-
optisk (E-O) koefficient in silicium. Det blev ogsa for forste gang eksper-
imentelt verificeret, at E-O koefficienten forsteerkes linesert med grup-
peindekset. Til maling af gruppeindekset blev der udviklet en direkte
metode baseret pa maling af transmissionstiden for en optisk puls. Der
blev fundet en verdensrekord for et direkte malt gruppeindeks (ny = 220).
Rekorden blev malt for en 20um lang symmetrisk W1-bglgeleder.

Overfgrslen af den stressinducerede E-O koefficient til en konven-
tionel indeks bglgeleder blev pabegyndt. Nar en sadan koefficient opnas
i en sadan bglgeleder vil fremtidige forsgg kunne fastlaegge hvor stor den
stressinducerede E-O koefficient i silicium kan blive. Fremtidige forsgg vil
ogsa fastlaeegge om den stressinducerede effekt eksisterer for hurtig elek-
trisk modulation.

iii
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Chapter 1

Introduction.

The backbone of communication is today comprised by optical signals.
The advantage of optical communication is the possibility for transmis-
sion of data at very high bit rates over long distances. In the laboratory
40 Gb/s has been transmitted over 160 km [1]. The common modula-
tion format works by turning the light on (1-bit) or off (0-bit), just like
blinking with a flashlight. In fast optical communication the light source
is not turned on or off but the light is instead sent through an external
modulator that either transmits the incident light or prohibits its propa-
gation.

There are several competing methods used for making external mod-
ulators. The electro-absorption modulator works by being either trans-
parent or black, depending on the applied current. A more widely used
method works by interference. The light is split into two pathways and
then recombined after propagating a few centimeters. At recombination,
the light can interfere either constructively or destructively depending
on the phase difference between the two arms. Constructive interference
returns a 1-bit, while destructive interference gives a 0-bit.

The critical point for a modulator, based on the interferometric prin-
ciple, is how to alter the pathway of the light fast, as a change in the
optical length by A/2 for one of the two pathways will change the inter-
ference from constructive to destructive. The only way for changing the
optical pathway fast enough for a telecom system is to make the light
propagate in an electro-optic material, i.e. in a material that changes
refractive index when a voltage is applied across it.

1
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2 Introduction.

Materials with high electro-optic coefficient change their refractive
indices significantly, when affected by an electric field. The electro-optic
material most commonly applied in optical communication is LiNbOs3, as
it possesses a high electro-optic coefficient. The disadvantage of LiNbOs
is the price and that it cannot be integrated with electronics. I.e. the
electrical modulation signal must be made in one component and then
transferred through a microwave cable to the LiNbO3 modulator.

The price of LiNbO5 and the lack of integration possibilities makes the
search for other material reasonable. One material, which is cheap, trans-
parent and integrable with electronics made in silicon, is silica (SiO3).
The only problem with silica is its lack of a linear electro-optic coefficient.
The refractive index of silica is changed quadratic when an electric field is
applied and the index change, due to an applied electric field, is therefore
0 to first order. Moving away from the bottom point of the index parabola
to a point where the slope is high will induce a electro-optic coefficient,
as the index change for an applied electric field scales with the slope.

The moving on the index parabola is done by applying a high voltage
electric field. In a device, it is not desirable to include a high voltage
generator, both from a security and from a cost perspective. To avoid
the high voltage generator, a large electric field is frozen into the glass
by poling. Glass is poled by applying high voltage and heating it to
~ 350° for ~ 20 minutes and then maintaining the high voltage while
cooling the glass down to room temperature. When the glass is heated,
charges will move inside the glass due to the high voltage. These charges
are then trapped when the glass is again cooled down, and hence a large
permanent electric field is built into the sample.

Poling of glass in this way opens a road for a glass based modulator
with all the advantages in terms of price and possible integration with
electronics. The scientific goal for this Ph.D. project was to realize a
switch or modulator with a switching voltage below 300V in poled glass
deposited on top of a 4 inch silicon wafer.

The success of glass poling depends on two parameters, the size of the
electric field frozen-in by poling and the curvature of the index parabola
(X(3)). Both parameters are determined for different samples using a pre-
cision measurement method developed during this Ph.d. project. From
the obtained values and due to the fundamental limitation, that the
frozen-in field cannot exceed the breakdown field, it is in chapter (5)
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concluded that: The third-order non-linearity of silica is a factor of 10
too small to be of any interest for making a poling based switch on a 4
inch wafer.

During the search for an increase in (x(®) a discovery was made. In
chapter (6) it is described how a significant electro-optic coefficient can
be induced in silicon, by applying a stressing layer on top of the structure.
The induced effect is significant and by further research it may become
possible to make a modulator in silicon that can compete with already
existing modulators.

The thesis is organized in the following way:
Chapter 2: The chapter starts with a short introduction to the origin
of material non-linearity followed by a description of waveguiding by to-
tal internal refraction. The Mach-Zehnder interferometer (MZI) and the
connection between material non-linearity and switching voltage is de-
scribed. The chapter ends with a description of poling.
Chapter 3: This chapter describes in detail the developed non-linear
measurement method starting with the derivation of a general equation
for the output of a MZI. A measurement method for determining the volt-
age required to induce a 7 phase shift using a commercial Li NbO3 phase
modulator is then described. This is followed by a description of the mea-
surement method for determining the frozen-in field and the non-linearity
(x) for the investigated samples using the commercial LiNbO3 modula-
tor. Finally, the method is confirmed by measuring on a precharacterized
sample and a conclusion based on comparing the developed method with
the Bragg grating method is made.
Chapter 4: The standard sample fabrication method is introduced fol-
lowed by short descriptions for more exotic fabrication methods.
Chapter 5: This chapter starts by evaluating the size of (x(*)) required
to realize an interesting switch. A method for increasing the frozen-in field
is then described followed by a measurement that gives a possible expla-
nation of the very large non-linearities reported in the literature [2, 3].
The explanation demonstrates that a (x(%)) increase is essential to realize
an interesting switch and doping of silica is therefore investigated. An
increase of (X(S)) by a factor of 5 is found, but the increase was judged
too small for reaching an interesting level. Finally, a totally different
waveguiding principle was investigated, i.e. guidance by a surface mode.
The result was, however, not positive. The chapter ends by concluding



“main” — 2006/6/28 —|16:15 — page 4 — #20

that no more research should be made with the aim of realizing an inte-
grated poled silica switch.

Chapter 6: When photonic crystals (PhC) were investigated, a discov-
ery was made. To give insight into this, the chapter starts with a short
introduction to the concept of photonic bandgap guidance, followed by a
description of how PhC samples were prepared for non-linearity measure-
ments. The discovery and all the puzzling observations are presented.
Most of the puzzling observations are explained by measuring at a higher
AC-frequency, but some fast oscillations are first clarified after a method
for measuring the group index in PhC waveguides was developed. Finally,
the discovery boils down to the existence of a significant x(?) value in
stressed silicon. The chapter ends with an outlook for future experiments
and concludes on the possibility of making an electro-optic modulator in
silicon.

Chapter 7 A conclusion on the whole project and the future possibili-
ties.

Appendix A: To process data from the measurements made on the
LiNbOs phase modulator in chapter (3) an ellipsoid must be fitted to
measurement points. This is in principle a well known mathematical
problem, but as no existing method was found (not even after speaking
to the mathematics modeling department, IMM, DTU.), a crude method
based on the Montecarlo approach is developed in this appendix. The
method can unfortunately introduce a systematic error of up to 1% and
hence there is room for improvement.

Appendix B: This appendix contains a detailed description of both
the systematic and the reproducibility uncertainties for the developed
non-linear measurement method. It is also described when and how the
uncertainty can be improved.

Appendix C: The Bragg grating measurement method is described in
this appendix.

Appendix D: This appendix contains a detailed mathematical descrip-
tion of the x(® tensor and how the index of the light is affected by an
electrical field in a x(®) material.

Appendix E: The confinement factor of a PhC waveguide is calculated
in this appendix. The calculation obviously leaves room for improve-
ment, which does probably require a change of calculation method, e.g.
3D FDTD calculations should be superior.



“main” — 2006/6/28 —|16:15 — page 5 — #21 ?

1.0 References to Chapter 1 5

References to Chapter 1

[1] T. Tokle, Q. Le, C. Peucheret, and P. Jeppesen. “Optimum dispersion
map for raman amplified 160 km nzdsf + dcf fibre spans with 40 gbit/s
rz signals”, Electronics Letters, vol. 40, no. 22, pp. 1443-1444, 2004.

[2] R. Myers, N. Mukherjee, and S. Brueck. “Large second-order nonlin-
earity in poled fused silica”, Optics Letters, vol. 16, no. 22, pp. 17324,
1991.

[3] T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats.
“Electro-optic modulation in germanosilicate fibre with uv-excited
poling”, Electronics Letters, vol. 31, no. 7, pp. 573-575, 1995.



“main” — 2006/6/28 —|16:15 — page 6 — #22




“main” — 2006/6/28 —|16:15 — page 7 — #23

Chapter 2

General Theory.

2.1 Bulk refractive index.

The main scope of this thesis is to use electro-optic modulation to make
a switch or an amplitude modulator. The difference between a switch
and a modulator is mainly the speed, that is significantly higher for a
modulator. A switch is generally more advanced in the sense that a mod-
ulator either transmits or blocks the incident light. A switch is capable of
transmitting the incident light to a specific output port. Fig. (2.1) shows
a picture of a switch and a modulator.

A material with non-zero electro-optic (EO) coefficient is capable of chang-
ing refractive index when an electric field is applied over the material. The
change in refractive index can be used to make a switch/modulator using
an interferometer of the Mach-Zehnder (MZ) type.

The origin of refractive index is the polarization of the material when
affected by an electric field. An electromagnetic wave (light) traveling
inside a material will polarize the electron orbitals. The polarized orbitals
oscillate and emit radiation identical to the incident light except for a
phase delay. The transmitted field is the sum of all contributions, i.e. a
sum of the remaining part of the original wave plus contributions from
all the material oscillators. The outcome of the light-material interaction
is an electromagnetic wave that propagates at a slower speed, that is at
the speed ¢/ng pyik, where ng gy is the bulk material’s phase refractive
index. ng puk is connected to the electrical susceptibility of the material,

7
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Switch with 2 inputs
and 10 output ports

Fesme ECTORS

10 GHz Modulator

10_GBit/s JDS MZ

Optical Input

Figure 2.1: Picture of a 2x10 switch and a modulator. The switch is capable of
transmitting the input light to any of the 10 output ports. In contrast, the modulator
is only capable of either transmitting or absorbing the input light. The advantage of
the modulator is the high speed (up to 10 GHz for the shown modulator ).

as

Nebulk = V 1+ X (2.1)

where x is the linear term of the susceptibility with respect to the optical
field. The electrical susceptibility of a material describes how easy an
electric field induces a polarization P in the material, that is [1]

P=exVE+xPE2+ xOE +..), (2.2)

where x(™ is a tensor of order n + 1. Normally x equals x(!), but when
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the electric field E is a sum of different fields including the optical field,
the result is more complicated.

The material susceptibility is wavelength dependent, as the electron
orbital distortion depends on the drive frequency. The index of silica is
to a good approximation given by the Sellmeier equation, that is

3
)\2
(ngpuk(N)? =1+ Ajﬁa (2.3)
= j

where )¢ is the vacuum wavelength of the propagating light while the
material constants A; and \; are experimentally determined [2] to

Sellmeier coefficients for silica

P4 X (um)
1 0.6961663 0.0684043
2 0.4079426 0.1162414
3 0.897494 9.8961610

Table 2.1: The Sellmeier coefficients found in [2] both describes the place and the
strength of the absorption bands in silica.

The wavelengths A; correspond to material resonance frequencies. This
type of index curve (see fig. 2.2) is common for all materials, as the index
is determined by the materials resonance frequencies, where the material
is easily polarized by an electric field. This also shows that the material
index approaches 1! for short wavelengths such as gamma radiation.

2.2 Waveguides.

There exist several methods for guiding light inside a medium. The sim-
plest method applied in this project is to guide the light in a high index
material (the core) surrounded by a lower index material (the cladding).
This is drawn schematicly in fig. (2.3) below.

In the limit where the wavelength of the light is small compared to the

'the index of vacuum, i.e. no wave-material interaction.
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Bulk phase refractive index (n¢vbu]k)

0 i 2 3
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I

Figure 2.2: The Sellmeier index for Si0O, vs. wavelength of the light. The
index is increasing for small wavelength approaching the resonance wavelength at
A2 = 0.1162414pm, see table (2.1).

=

[

Figure 2.3: A straight planar waveguide. The blue glass (the core) has a higher index
than the surrounding cladding. The glass structure is supported by the wafer, a single
silicon crystal that is 0.5 mm height.

waveguide dimensions, guiding is due to reflection at the boundary be-
tween the materials. If light is incident into the high index (n1) material
it cannot propagate into the low index material (ny) when the angle ()
of incidence is larger than the critical angle (a.) found by Snell’s law
(sin(ae) = no/nq).

Normally the wavelength of the light is roughly of the same size as the
waveguide width and height. In this case the equation for the guided
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[

Figure 2.4: A straight planar waveguide with a large core. The yellow line represent
light being guided inside the waveguide. The light is reflected at the interface between
the high index core (n1) and the low index cladding (n2). The angle of incidence is
called a and it is illustrated at a waveguide cross section. When the angle is larger
than the critical angle (sin(a.) = na/n1), the light is reflected totally at the interface
and is hence guided inside the waveguide.

light (the guided mode) is found by solving Maxwells equations. For a
waveguide with dimensions on the wavelength scale there is only a lim-
ited number of guided solutions. The number depends on the size of the
waveguide. When the waveguide size is small enough only one solution
will remain. Such a waveguide is known as a single mode (SM) waveguide.
Light in a small waveguide will be propagating partly inside the core and
partly in the cladding as shown in fig. (2.5).

Waveguidée

mode &

~—

[

Figure 2.5: A small waveguide. The fundamental mode is illustrated at the waveguide
end. The light propagates mostly inside the core with a tail sticking into the cladding.
The effective index for the mode is in between the core and cladding index.

The phase propagation constant (3) for light inside a waveguide is some-
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where between the bulk phase propagation constant for the cladding and
core materials. This phenomenon is described by assigning an effective
index to the waveguide, called the effective phase index (ngesr). The
different modes are numbered by decreasing (ngsy) starting from the
fundamental mode?. The group index? is also affected by the waveguide
design and it is denoted (ngefr). The group index can in general be
determined by the equation [3]

dw
dap,’
where v is the mode index. Even for a single mode waveguide, there are
two guided solutions to Maxwell’s equations, as the light can be polar-

ized either as a transverse electric (TE) wave or as a transverse magnetic
(TM) wave?. This is illustrated in fig. (2.6)

Ng = (2.4)

Waveg%/ \Ol
mode /i g

\=) (’o‘e

[

Figure 2.6: The propagating field is transverse electric (TE) polarized. The electric
field is oscillating in the horizontal direction and it is perpendicular to the propagation
direction.

In the case of TM polarized light, the electrical field is almost vertical,
but it has a small component in the propagation direction. The effective
index (ngsr) depends on the polarization direction, but the modes are
degenerate® when the waveguide can be rotated into itself around the

2the mode that remains when the waveguide becomes single mode.

3The group index (n,) determines the speed (c/ny) of a light pulse propagating in
the waveguide.

“The electric field for TM light is not perpendicular to the propagation direction. It
is however approximately perpendicular and this approximation is used in the deriva-
tions of the change in refractive index (Anzas) due to the nonlinearity x® in appendix
D.

SDegenerate modes have equal propagation constants.
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waveguides center axis with a turn of 120 degrees or less [4]. This is il-
lustrated in fig. (2.7).

Wavegui

A
mode (/4@ 5
=,

o®

[

Figure 2.7: A triangular waveguide can be rotated into itself with a rotation of 120°.
The TE mode that is illustrated has exactly the same propagation constant as the TM
mode.

2.3 Mach-Zehnder interferometer.

The common way to apply EO materials for making an amplitude mod-
ulator is to use a Mach-Zehnder interferometer (MZI) configuration. The
interferometer works by splitting the incident lights intensity equally into
two arms. After some propagation length the two arms are re-combined.
The outcome of the re-combined light depends on the phase difference be-
tween the two electromagnetic waves at re-combination. When the light
is in phase (0 phase difference) the two waves interfere constructively
while a 7 phase difference leads to destructive interference. This is shown
schematicly in fig. (2.8).

The phase difference at re-combination is controlled by the optical path
length of the two arms. When the arms have equal optical path length
the light is in phase at re-combination and light is emitted from the inter-
ferometer. To change the output to zero emission, the optical path length
of one or both arms must be changed. When the difference in optical path
length equals A/2 the light will interfere destructively at re-combination.
The optical path length [, is

lopt = lphyNg,effs (2.5)
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When one
light wave

is added
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1o anather, \/\
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the resulling
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is the sum of the
amplitude of the
two light waves
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is changed relalive
to each other

Laser light The light is split
anters the modulator into two beams

The result is light
encoded with data

Phase shifting . QO

Phase shifting

intgl.

Figure 2.8: A figure from Intel demonstrating a MZI. The light is split into two arms,
where the phase of the light can be changed. At re-combination the output depends
on the phase difference between the light beams.

where [,p, is the physical length of the waveguide. The index ngcr; is
used, as the relevant parameter for interference at re-combination is the
phase difference between the two waves.

To change the output of the interferometer, the optical path length
must be changed. This can be done by changing either the physical
distance and/or ng.rr. The physical distance is hard to change except
when light is propagating in free space and even in free space is difficult
to change Iy, fast. The index (ng.fr) can be changed in a number of
ways, e.g. the waveguide index is affected by pressure, electric fields, light
intensity and numerous other effects. It is convenient to use materials
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that change index when affected by an electric field, i.e. materials with a
non-zero KO coefficient, as electronics can produce rapid varying electric
fields. A material that has a non-zero linear EO coefficient will change its
bulk phase index (74 puk), When affected by an electric field E according
to the equation [5]

2)

(
Ang puk(E) = X

=2 _F, (2.6)
N bulk,0

where 14 py1k,0 is the material phase index when no field is present and X(Q)
is either the materials second order non-linearity or the effective second

(2)

order non-linearity x I due to x(® combined with a large permanent

€
electric field (Ep). Both x( and x(® are in general tensors and the
derivation of the index change due to a non-zero x(® tensor element can
be found in [2]. Due to the nature of the x(?) samples investigated in this
project, there is only used TE polarized light in the measurement and the
tensor element giving an index change is Xg;%;)z In this thesis x(?) is the
name of the scalar element Xg?a;)z For x(®) materials eq. (2.6) is derived in
appendix D, where it is assumed that the material is isotropic, i.e. that
X, y or z direction inversion have no effect on the material. The equation

for ch)f is

xﬁ)f =3x®E, (2.7)

where E, is the permanent field. The magnitude of x? and x® will in
general depend on the frequency of the applied electric field (E), that is
used to induce Ang pyg-

The desired effect in the MZI is to induce a change in the effective
refractive index (Angcsf). The origin of Ang.sr is a change in the bulk
materials index Ang pyx. Perturbation theory [6] is used to determine the
equation for Ang .¢s as function of Ang pyx. The perturbation approach
starts with the general differential equation for a propagating wave, i.e.
the Helmholtz equation, that is

(V2 + e(z,y, 2)ko) E(r) = 0. (2.8)

The solution for a waveguide which is uniform along the propagation
direction is

Ep(r) = [ Z; ] Ep(z,y)e™ ", (2.9)
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Ay
Oy
describing the polarization. When the solution (2.9) is inserted into eq.
(2.8), the perturbation approach [6] gives

Angerf(E) = Z Ang putk,il'is (2.10)
i

where m is the modal index and is the normalized Jones vector

where Ang pyik is the bulk refractive index change of layer ¢ and I'; is
the confinement factor to layer i. Notice that the perturbation of the
mode shape (AE,,(z,y)) to first order has no effect on the propagation
constant. Eq. (2.10) is normally used for determination of the material
non-linearity, even though the perturbation approach is only correct for
a waveguide that is uniform along the propagation direction. For other
types of waveguides, where the electric field changes significantly along
the propagating direction, it has theoretically been shown that [7]

Ngeff
Angerr(E Z Ang puikil' o tuied (2.11)

where ng .r; is the effective group index of the guided mode. The linear
enhancement of Ang rs(E) with the group index ng s is demonstrated
experimentally in this Ph.D. thesis (see section 6). As eq. (2.10) is the
normal equation applied for determination of the material non-linearity,
this equation is used through out this thesis, except when explaining the
results for photonic crystal (PhC) waveguides.

Combining eq. (2.6) describing the change in 14 puik,; due to an electric
field with eq. (2.10) gives

K
A X BT, 2.12
Neef f(E Z M ulb s Ly, (2.12)

where XZ(Q) is the non-linearity of layer 4, ny puik,0,; is the bulk phase index
of layer 4 when no electric field is applied and E; is the electric field
affecting layer i. The applied measurement technique determines the
change in the effective index of the guided mode Ang.;r as function
of applied voltage across the sample. To determine the individual non-
linearities of the core and cladding materials, all the individual terms in

eq. (2.12) except one must be known. In the case where the sample
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consists of a core material with a non-zero x(2 value surrounded by a
cladding material with zero x(?), eq. (2.12) reduces to

(2)
X
Angef(E) = —=—FEorelcore- (2.13)
N, bulk,0,core
This is the case for PhC waveguides, the only samples investigated in this
work, where a x() value is observed. For samples where x(?) is induced
by x® combined with a permanent electric field, both the core and the
cladding contribute to the change in Ang.rs. For x®) materials it is
difficult to determine the individual terms and the measured Angcry is
therefore used to interpret an average non-linearity coefficient, i.e.

XY E
Angss(E) = 2“2, (2.14)

Neff,0

(3)

where yg is the average® non-linearity of the sample and Ng.eff,0 s the
effective phase index of the waveguide when E = 0. Eq. (2.14) describes
the linear part of the index change for a x(® material where a large
permanent field (E,) is applied together with the switching field (E). In
a switch or modulator it is the linear index change with applied field that
is useful. In general the requirements for the two fields F, and E are the
same, i.e. a slow variation compared to the optical field. The two fields
can therefore not be distinguished. The general equation for the index
change of a x(3) material is therefore

3x$’)

=24 g2 2.15
2n¢.ef£,0 (2.15)

Angerr(E)

When comparing Xﬁf’;) values obtained from different samples, the cladding

material and the confinement factor to the core is kept approximately
identical. The difference in ngz) does then arise from the difference in
material x(3) for the core material.

The determined equations (eq. 2.13 and eq. 2.14) for the linear change
in effective phase index (Ang s f(E)) can be used to determine the voltage
required to drive a switch. The simplest modulator is a MZI, where only

one arm is modulated (see fig. 2.9).

5The confinement factor is used as weighting factor for the averaging of the material

) values.

X
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Figure 2.9: A MZI where the phase is modulated in one arm. The switching voltage
is applied to the top electrode and the bottom electrode is grounded.

The light will interfere constructively when the two arms are identical, i.e.
when no voltage is applied to the electrode. To change the output of the
modulator, the voltage V. is applied. This voltage alters the refractive
index of one arm and when the optical path length is changed by A/2 the
interference becomes destructive when the two waves are re-combined as
shown in fig. (2.8). To determine the required voltage V; for changing
the optical path length by A/2, eq. (2.5) for the optical path length is
combined with either eq. (2.13) or eq. (2.14) describing the change in
effective refractive index, that is
(2)

T
A2 = lsampleME (2.16)

N, bulk,0,core d
Bt By Vi

A2 =1
/ sample Tgef 1.0 d’

(2.17)
where the electric field E has been replaced by V;¢/d (the factor ¢ is
properly introduced after deriving eq. 2.19) in the case of a x@ material
sandwiched between two dielectric medium (see fig. 2.10) and V; /d for a
x®) material.

The strength of the electric field in a specific layer depends on the vari-
ation of dielectric constant between the materials’. The electric flux

"A dielectric constant depends on the frequency of the applied field and is in general
different for the slow varying voltage applied and for the optical field.
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Electric field (E) Eletric flux density (D)
inside sample inside sample

Voltage applied Voltage applied
Electrode Electrode
Sio, Si0,
Silicon N\ Silicon
Sio, Si0,
~Grounded ~Grounded
Silicon Silicon
wafer wafer

Figure 2.10: A sample where the core layer (Silicon) has a higher dielectric constant
€, than the cladding layer (Silica). The electric field (E) is lower in the high index
layer, while the electric flux density (D) is constant [8].

density field D = ¢,¢gFE is constant between the electrodes and the field
in each layer can therefore be determined. The voltage over the sample
is

V = FEidi + Eads, (218)

where F; is the field inside the silicon, d; is the thickness of the silicon
layer, Fy is the field inside the silica and dy is the total thickness of the
silica layers. Writing the equation using the D gives

D Dqyd
Vey = 1d1 + =22 & (as D constant)
€r,1 €r,2
Dd Dd
Ve = L + 2 4
€r1 €r,2
di +d
B - S2lditd) V (2.19)

diero+doery d
e —
=<

The determined electric field depends linearly on the applied voltage and
the factor ¢ in eq. (2.16) represents the linear correction factor. An ex-
ample of ¢ is plotted in fig. (2.11).

In eq. (2.17) for a x(® material the correction factor is omitted, as the
three layers are very similar and hence also have similar €, values. The
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Figure 2.11: The linear factor ¢ between the naive field V/d and the field inside the
silicon for a sample with 2um of SiOs.

difference in dielectric constant is therefore ignored. The switching volt-
ages for the two cases are

)\dnqﬁ,bulk,o,core

V. = o (2.20)
2lsample§XcorePcore
Ad

V, = Coibibel] (2.21)
GIsampleXav Ep

The shift in optical path length needed to change the output of the switch
is always A/2. The absolute value of the required voltage can be reduced
by a factor of two by introducing a permanent optical path length increase
of A\/4 in one of the arms (see fig. 2.12). There must then be applied a
voltage of V. /2 to get constructive interference and a voltage of —V;. /2 to
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get destructive interference. Another way to reduce the absolute voltage
by a factor of 2 is by applying electrodes on both sides of the waveguide
(see fig. 2.12). The voltage on the bottom electrode must then be the
opposite of the voltage on the top electrode. Finally the absolute size of
the voltage can be reduced by a factor of 2 by modulating both arms in
the MZI at the same time (see fig. 2.12).

By combining all three methods the required voltage is reduced by a factor
of 8. This is smart when the challenge is the size of the required voltage,
e.g. it is difficult to find an electrical driver that switches 1000 volts fast,
while a combination of drivers each producing 125 volts is easier to get.
In other cases it might be best only to have one driver, as it is difficult
to synchronize fast drivers.

To define a size that is comparable without deciding which electrode
configuration is smartest, it is normal to report the total voltage swing
required to change the output of the interferometer, multiplied by the
total affected length, i.e.

Ad:
Vilsample = outib.core (2.22)

2
2§X£02“ercore
Adnd),bulk,o,cm‘e

6Xl(l:21) Eprcore

Vrlsample (223)

This is a good engineering unit for a device where the waveguide parame-
ters have been optimized, as it includes all the compromises like weighting
the desire for a small electrode-electrode distance against the requirement
of not loosing light from leakage to the electrode (see fig. 2.13). The other
nice feature about the unit Vilsampie (normally measured in V' * cm) is
that this is the size directly determined by the non-linear measurement
method.

When making material development, it is better to determine the
constants Xﬁi)re or X&‘Z’), as the optimal waveguide design for a certain
material is not trivial to determine.

The material non-linearities can alternatively to eq. (2.2) be described as
a Taylor expansion of the material impermeability (1). In the alternative
expansion, the bulk refractive index change is written [5]

1

1
Ang puik(E) = ng,bulk,0 — §tnz,bulk,0E - Esnz,bulk,OEz (2.24)
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where t is called the Pockels coefficient and s is called the Kerr coef-
ficient. The equations connecting the two ways of expressing material
non-linearity are

2v/(2)

ro= — X (2.25)
% bulk,0
3)

6 = — X7 (2.26)

1
" bulk,0
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Figure 2.12: There exist three ways for reducing the required voltage.

The first

way is to increase the optical path length of one arm by A/4. Switching is then done
by changing the applied voltage from —V;/2 to +V;/2. The optical path length is
normally adjusted by applying a DC-electric field over the arm. The second possibility
is to apply electrodes on both sides of the waveguide. Switching is then obtained
by applying +V;/2 to the top electrode and —V;/2 to the bottom electrode. The
third possibility is to modulate both arms simultaneously, i.e. switching is obtained by

applying +V/2 to one arm and —V; /2 to the other arm.
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Figure 2.13: Waveguide where the distance between the electrodes is too small. The
tail of the optical field sees both the top and bottom electrode. The field reaching the
electrodes is lost due to the high optical loss in the conducting materials.
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2.4 Poling.

In eq. (2.7) and effective x® value is introduced by combining the ma-
terial x(3) with a permanent electric field E,. This section describes how
such a permanent field is obtained through the poling process. Poling is
done by applying a high voltage field over the sample while it is heated to
~ 350°C. The sample is kept at elevated temperature for approximately
20 minutes and then cooled down to room temperature while the high
voltage field is maintained over the sample. When the glass is heated
charges and/or dipoles inside the glass orient themselves according to the
external field (see fig. 2.14). The charges and/or dipoles are trapped,
when the glass is cooled back to room temperature.

Before . After
Poling of sampl g P i
olimg o1 sample e
opcladding
. R R i TS
High voltage DC ext| o e &g Buffor & int
Before . After
: Poling .
poling [ poling
Heat Grounded (©] Topcladding | g tﬁ o
ECX[T Q Core o—b——o lEim
(e} Buffer

Figure 2.14: Poling is performed by maintaining an electric field over the sample
while exciting the glass, e.g. by heating. The top right figures illustrate the dipole
model, while the bottom right figures illustrate the charge separation model [9].

Etching results performed in [10] show that charges are moved in poled
fibers. The best explanation for the field poled into the samples is there-
fore the movement of charges, as there is no fundamental difference be-
tween our planar samples and the fibers poled in [10]. There is an op-
timum for both the poling time and temperature as described in [11].
The explanation of this is probably charge depletion of the material as
described in [10]. When all movable charges inside the material have mi-
grated to the electrodes, the material is totally depleted. Then there are
no charges that can make an internal electric field (see fig. 2.15). The
trick of poling is to stop, when the charges have migrated to the optimal
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position as shown in fig. (2.15). The poling temperature controls the mi-
gration speed of the different types of charges and by choosing the correct
temperature the difference in charge migration speed is optimized.

© o
X\O{& o\ © =N f—@ lEint
Before (@0% RO v Y 0
poling e~
© |—@—P Optimal poling | ® P—&@ ©
EextT O | o—1 77 g P A~ Eint
TS L O OO O
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(0] ~
Pl g8 [© O
Ijbe lEint
Q €)

Figure 2.15: When the external field is applied and the sample is heated, i.e. when
the sample is poled, charges inside the glass starts to move. If the poling time is to
short, the charges will only move a short distance and the build-in electric field is
hence small. A very long poling time will on the other hand move the charges out of
the sample and the build-in electric field will also be small. The optimal poling time
is somewhere in between, at the point where the optical field inside the waveguide is
affected in an optimal manor.

The effect of poling can be demonstrated by measuring the Bragg wave-
length vs. applied DC-field. In appendix C it is shown that the Bragg
wavelength is equal to ng.rrA, where A is the pitch of the phase mask
(i.e. a constant). The Bragg wavelength vs. applied field is shown in fig.
(2.16) for a sample before and after poling. The figure shows that the
index parabola is shifted due to the frozen-in field (Ef,gzen—in)- It also
shows that the curvature of the parabola is not affected by the poling,

i.e. that Xff;) is constant.
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Refractive index parabola and tangent
at zero field before and after poling
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Figure 2.16: Before poling, the index follows the black curve. After poling a field
corresponding to ~ 1050V is built into the sample. The tangent at zero field was
small before poling, i.e. a small electric field did not have a significant impact at the
refractive index of the sample. The tangent at zero field is after poling much higher
due to the frozen-in field. A small electric field has a significantly higher impact on the
refractive index after poling. Notice that the curvature of the parabola is not changed,
i.e. the only significant effect of poling the sample is the creation of a large built-in
electric field (Ep).
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Chapter 3

Theory for the DC-shifted
Mach-Zehnder
interferometer method.

3.1 Introduction to the theory for the
measurement method

There exist many methods [1-4] for measuring the frozen-in field Ef,qzen—in
and the non-linearity coefficients x(2) and x(3®) for a sample. One method
previously used in the group [1] (The Bragg grating method, outlined in
appendix C) was discarded due to two aspects. The most severe problem
was a reproducibility problem'. The measured result for x(® could vary
randomly with a factor of 1.5. The other aspect was the requirement of
a Bragg grating written into the waveguide. The grating was induced
by shining very intense UV-light onto the sample through a phase mask.
This only introduces a Bragg grating when the sample is UV-sensitive.
The other method used in the group was based on a Mach-Zehnder
interferometer(MZI). It was previously assumed that the phase difference
between the two arms in the fiber based MZI was not only constant during

L A possible explanation for the reproducibility problem is a communication problem
between the laser and optical spectrum analyzer used. The problem was detected by
Jesper Bevensee Jensen after I finished the work on the DC-shifted MZI method. The
communication problem has not been intensively investigated.

29
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a measurement but actually equal to 7/2. As shown in fig. (3.6) and
(3.7) this was not the case when measurements where performed in this
Ph.D. project. This chapter about the new DC-shifted MZI method
is mainly a consequence of the fast random phase drift (severe up to 5
kHz and measurable up to 10 kHz).

The derivation and explanation of the DC-shifted MZI method is di-
vided into 3 sections. Section (3.2) is used to derive a general equation
(that is eq. 3.14) for the light intensity output from a MZI. Section (3.3)
describes the calibration method used for measuring V, for the LiNbO3
phase modulator that is used in the experimental DC-shifted MZI setup.
The measured V() values are listed in table (3.1) and plotted in fig.
(3.13). The measurement method that determines Ej.q,en—in and the
non-linearity coefficients x(2) and x(3) for a sample is described in section
(3.4). The goal of the 3 sections is to proof that the measurement can
be used to determine the phase shift induced by the sample in an unam-
biguous way. The chapter ends with a section concerning the accuracy of
the method and also a summary of the pros and cons for the developed
method.

3.2 General theory for a Mach-Zehnder
interferometer.

3.2.1 The optical setup for section (3.2).

A Mach-Zehnder interferometer(MZI) is used for measuring the frozen-in
field Etrozen—in and the non-linearity coefficients x@ and x®) for the
characterized waveguides. The MZI setup has been modified in a number
of ways to obtain better accuracy and more information. A detailed de-
scription is given first for a general MZI, then for the special MZI setup
used to calibrate the LiNbO3 phase modulator and finally for the setup
used to measure the samples. A general MZI consists of a light split-
ter, a propagation distance where both the phase, the polarization and
the amplitude are changed and, finally, a coupler that combines the light
again. A fiber based interferometer made using two couplers is illustrated
in fig.(3.1).
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Coupler Upperarm \c(,jﬂe,ﬁ
A&x@i_//,_\\\, Lower arm ,//—\\\_____

Figure 3.1: A general Mach-Zehnder interferometer(MZI) where light traveling in the
upper and lower arms can be influenced by numerous affects.

3.2.2 Derivation of the output from a general MZI

To derive equations describing the intensity output from the two arms to
the left in fig.(3.1), the central part of the last coupler is investigated. The
central part consist of two straight waveguides of length /., where light is
coupled from one arm to the other. For a simple case this is sketched in
fig. (3.2).

) ) Central part of coupler,
Incident light = : 3 Outgoing light

7=0 7=,

Figure 3.2: Central part of the last coupler. The length of the central part is I. To
describe a simple case, light is only incident in the upper arm. The distance between
the center of the two waveguides is around 15um.

To describe the outgoing intensity, it is adequate to look at a simpler case
first. In [5] it is described how light in two close lying waveguides couples
from one waveguide to the other. Light with unity intensity is incident in
the upper arm, while no light is incident in the lower arm (corresponding
to fig.(3.2)). The equations for the amplitudes of the light in the upper
arm (a1) and in the lower arm (a2) after propagating a length z are

ai(z) = '3 (cos('yz) —ig—f sin(*yz)) (3.1)
as(z) = i’—f?e—zgﬁz sin(yz), (3.2)

where

2
v = (%> + C12C21. (3.3)
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The constant AB = (1 — (B2 describes the difference in propagation con-
stants between the two waveguides, the constant Cys is the coupling co-
efficient from the upper arm to the lower arm and Cb9; is the reverse
coupling coefficient.

After having presented the simple case, where light is only incident
into one arm, the general case can be derived. The coupling for the light
incident in the upper arm is not affected by the light incident in the lower
arm. The general solution, when light with intensity I; and phase ¢; is
incident into the upper arm while there is simultaneously incident light
into the lower arm with intensity I and phase ¢9, is found by adding
the outgoing amplitudes. Calling the general amplitude solutions in the
upper and lower arm af(z) and aj(z), respectively, the general solutions
are

al(z) = \/Tle—i%l(z)[“1“"]Jr IQe—i%Q(z)[“%] (3.4)

aly azy
dd(z) = e a(z) [ 22 ] + VIe ®ay(2) [ Mo ] , (3.5)
a2y A1y
where ZI” and [ Z” ] are the normalized Jones vectors describing
ly 2y

the polarization for the light incident in the upper and in the lower arm.
When the two polarizations are orthogonal to each other, there is no
interference, and the output power from an arm is found by adding the
power contributions from the two arms. On the other hand, when the
two polarizations are parallel, there is maximal interference.

To obtain maximal interference a number of parameters must be opti-
mized. A polarization controller is introduced to make the polarization of
the light in the two arms parallel. Moreover the coupler must be symmet-
rical, meaning the propagation constants in the two arms must be equal
(AB = 0) and the coupling coefficients must be equal (C1o = Co1 = C).
These restrictions are fulfilled if a 3 dB coupler? is used as the last cou-
pler. The MZI including the polarization controller and a 3 dB coupler
is shown in fig. (3.3). Using a 3 dB coupler also ensures that half of the
light incident in one arm is coupled over to the other arm at the output
for a certain wavelength. In the experiment the coupler is 3 dB at 1550

2A 3 dB coupler distributes light from an input fiber evenly into the two output
fibers.



“main” — 2006/6/28 — [16:15 — page 33 — #49 ?

3.2 General theory for a Mach-Zehnder interferometer. 33

nm. The experiment is made for a number of different wavelengths, and
the coupler is not 3 dB for all the wavelengths. In the derivations, it is
therefore not assumed, that half the light is coupled from one arm to the
other.

Upper arm
Twister 3 dB Coupler
Coupler OO @ 1550 nm..—_Upper arm out

M\ Lower arm/\ Lower arm out

Figure 3.3: MZI where the polarization is adjusted for maximum interference.

With these restrictions on the polarization and the coupler (A8 = 0 and
Ci12 = Cy1 = C), the equations describing the amplitudes (a"**) and
(a5®*) for the light after propagating through the last coupler are _

) = VI e | ] i
= (VT cos(Clo)e ™1 —in/Tysin(Cl) “”)[ ]
a5 (1) = /Te—%ay(Cl,) [ Zz] Tie™ wlal(Clc)[ ]
= (VB cos(Clo)e ™ — i/ sin(Cl)e ) [ ]
(

Defining the phase difference A¢ = ¢ — ¢1, the powers (P{"**) and
(P3"**) in the upper and lower arms after the last coupler are

P — T, cos*(Cl.) + I sin®(Cl.)

I, I sin(Cl.) cos(Cl,) sin(A¢) (3.8)
PIax — T, 5in?(Cl,) 4 I cos?(Cl.)
+2+/ 1115 sin(Cl,) cos(Cl,) sin(A¢). (3.9)

As noted, the variation of the power is biggest when sin(Cl.) = cos(Cl.) =
1/4/2, i.e. when the last coupler is 3 dB. In the MZI setup the phase (A¢)
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is affected by different factors; the length of the two arms, the temperature
fluctuations for the arms and the phase change induced actively by phase
modulators (see fig.(3.4)).

Upper arm

Twister 3 4B Coupler
Coupler Phase @1550 nm,—2nused
modulator 1
Lower arm
M Phase _f_\lntensity

modulator 2 detector

Figure 3.4: MZI where the phases (¢1) and (¢2) of the light are changed actively by
phase modulators.

The phase (¢1(t)) of the light in the upper arm and the phase ($2(t)) of
the light in the lower arm before entering the last coupler are

$1(t) = c1 + P17 (t) + 1 (Ermod,1) (3.10)
bo(t) = c2 + P37 (t) + b2(Emod,1) (3.11)

noise noise

where ¢; and ¢y are the phases for z = 0 and ¢t = 0, ¢1"%¢(t) and ¢5°"*¢(t)
are the phase changes due to noise and finally ¢1(Ep,0q,1) and ¢2(Epmed,2)
are the phase changes due to electrical fields Ey,04,1 and Epeq2 applied
to the phase modulators. The power detected by the intensity detector
in the lower arm is

I(t) = I;sin®(Cl,) + I cos?(Cl,) + 2+/I1 1, sin(Cl.) cos(Cl,)
sin [e1 + @1 (t) + $1(Emod,1)
—cy — @B (t) — po(Emod,2)] - (3.12)

Replacing the phase constants ci, c; and the noise terms 7°*¢(t) and
©h?*%¢(t) with a general noise term ¢™?**¢(t) the equation is

I(t) = I, sin®(Cl.) 4 I cos?(Cl.) + 2+/ 115 sin(Cl,) cos(Cl,)
-sin [QDnOise(t) + $1(Emod,1) — ¢2(Emod,2)] .
(3.13)
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This is the intensity in the lower arm of a general MZI. To ease the later
derivations the equation is written as

I(t) = I,sin®(Cl.)+ I cos*(Cl,)

+7 sin [@”Oise(t) + ¢1(Emod,1) — ¢2(Emod,2)] :
(3.14)

where 7) is

n = 2+/I115sin(Cl.) cos(Cl.). (3.15)

3.3 V, for the LiNbO3 phase modulator.

3.3.1 The optical setup for section (3.3).

To find V;, i.e. the voltage required to change the phase by =, for a
LiNbO3 phase modulator, a MZI setup is used (see section 3.2.1). The
LiNbO3 modulator is placed in the upper arm, while the lower arm is a
non-modulated fiber. A polarization controller is placed in front of the
LiNbO3 modulator, as the loss in the modulator is polarization depen-
dent. To ensure stable incident polarization throughout the measurement,
a polarization controller and a polarizer are placed after the laser (see fig.
3.5). The two new introduced polarization controllers are adjusted to en-
sure the best transmission through the polarizer and through the LiNbO3
modulator, respectively. There is also inserted a wavemeter for measuring
the precise wavelength in the reference arm.

Even though the amplitude modulation of the measured signal is pro-
portional to 2v/I1I5 (see eq.3.14), the dynamic range of the photo de-
tector sets restrictions on the power level. The maximal power detected
(= I + I3) should be within the dynamic range for the photo detector.
To obtain the largest signal with this restriction on the maximum power,
the optical attenuator is adjusted so I} & I . The sum of the intensities
(I1 + I) is adjusted by controlling the laser output power.

The intensity I(¢) detected by the photo diode is a simpler form of

3This is strictly only true when the last coupler is 3dB, that is when Cl, = 1/2.
However the last coupler is almost 3dB for the wavelength range used (1270nm to
1620nm) and the attenuator is therefore still adjusted so I1 =~ Is.
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3dB Coupler

Unused  @1550 nm
Upper arm

Twister Polariser 3dB Coupler Twister [ LiNnbO Twister 3dB Coupler
OOON |~@1550 nm phase @1550 nm_Unused
| modulator
TN i Lower arm Photo
Unused i Attenuator diode
1 T
1 r

Signal H H
Lock-in amplifier| |Lock-in amplifier

generator
T Voltmeter fundamental 2 harmonic
! i

_________________

Figure 3.5: The MZI used for measuring V; of the LiNbOs; modulator. On the
optical side there is added two polarization controllers, a polarizer, an attenuator and
a wavemeter relative to fig. (3.4). The lower arm is not modulated actively.

eq.(3.14), as only one arm is modulated externally. That is

I(t) = Isin®(Cl) + I cos®(Cle) + nsin [¢"7*¢(t) + ¢1(Emoa,1)] -
(3.16)

3.3.2 Estimating frequency and amplitude for ©"*¢(t).

To estimate ©"?¢(t), Epod, is set to 0, i.e. none of the arms are mod-
ulated actively. The setup used corresponds to fig. (3.3) where the light
intensity in the lower output arm is detected with a photo diode. The
measured change in intensity arises solely from noise. To determine the
frequency of the noise, the intensity signal from the photo diode is mea-
sured with an oscilloscope and the signal is Fourier transformed. The
result is plotted in fig.(3.6).

This spectrum reveals that the noise is slower than ~ 10k H z. To estimate
the amplitude of the noise, a single oscilloscope picture of the intensity is
plotted in fig. (3.7).

As shown in fig. (3.7), the intensity varies between 0 and I + I, i.e.
©"°%5¢(t) varies between —7/2 to m/2 (modulo 7). That is, the phase
fluctuates with an amplitude that could be bigger than measurable with
a MZI setup.
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25 30 35 40 45

Figure 3.6: Fourier transform of the phase noise signal measured. The noise floor of
the used oscilloscope is -80dB. The noise is severe up to 5 kHz and it has measurable
frequency components up to 10 kHz.

0 5 10 15 20

3.3.3 Measuring V, using two lock-in amplifiers

With the large and relatively fast oscillating noise in the back of the mind,
Epn04,1 is chosen as a sine function®. This choice of electrical modulation
function results is eq. (3.19-3.23) in the following and with the final
derivation of eq. (3.28) the choice should be self-explaining.

Emod,l = Aciectric * Sin(Wt + 0) (317)

As LiNbOs is a non-linear material with a X(Q)-Value, the phase of the
optical signal is modulated by a function proportional (see section 2.3) to
the electrical signal. L.e. the phase is also modulated by a sinus function
A * sin(wt + 6). The frequency of the signal Ey,y4,1 is chosen to 33.333
kHz. As the noise frequency is lower than 33.333 kHz, it is assumed,
that "***¢(t) can be replaced by a constant c[2**¢ for each oscillation of
the electrical 33.333 kHz function. This assumption is justified after the
derivation of eq. (3.28). The intensity (Inoice constant(t)) With the noise

replaced by a constant cg"i‘"’e, is given in the eq.(3.18) below. The constant

*Different electrical functions (sinus, square and triangular) and different detection
schemes have been tried before a good approach was found.
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v *x=391m¥

1,0 o
0.0 0,5 1,0 1,5 2,0 2.5 3.0 1.5 4,0 4,5 5.0

Figure 3.7: The curve is the measured intensity, when the arms of the MZI are not

modulated actively. The oscillations of the phase noise (¢™**¢(t)) makes the signal
oscillate between 0 and I; + I». The intensities are almost equal (I; = I and the
intensity in one arm corresponds to 391mV on the photo detector.

noise

cp%e is different for each oscillation.
Loise constant (t) = I sin” (Clc) + I COS2(CZC) + 7 sin (cgoise + ¢1 (Emod,l))
= I;sin®(Cl.) + Iy cos*(Cl.) + nsin (A * sin(wt + ) + cZOise)
(3.18)

To determine the amplitude A as function of Agjecsric, i-€. to determine
Vi, the signal is detected by a lock-in amplifier. The lock-in amplifier also
receives a reference TTL? with signal from the signal generator. From the
reference signal, the lock-in amplifier generates an internal sin(wt+60+65)
function and an internal cos(wt+ 60+ 65) function with the same frequency
as the reference function but with a different phase (6 + 65).

The lock-in amplifier works by splitting the input signal in two. One
part is multiplied by the reference function sin(wt + 6 + 63) and then
integrated over a chosen timeslot. The other part of the input is multiplied
by the reference function cos(wt + 6 + 62) and then integrated over the
same timeslot. The Lock-in amplifier then measures the DC-value of

SA TTL (Transistor-Transistor logic) signal is a square signal oscillating between
0V and + 5V.
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the resulting functions. The timeslot is chosen to 30 us corresponding
to integration over one period of a 33.333 kHz function. The signals
Lock-ingin(z) and Lock-inges(y), detected by the Lock-in amplifier, with
(wt + @) substituted by (z), are

27
Lock-ingin () = / (I, sin’(Cl,) + I cos*(Cl,)) sin(z + 05)/(27)dz
0
27
+ n/ [sin (A * sin(z) + cZOise)] sin(z + 67)/(27)dz
0

=n/(2x) /0 " [Sin (A * sin(z)) cos (CgOise)

+ cos (A * sin(z)) sin (cg"ise)]

- (sin(z) cos(f2) + cos(z) sin(hs)) dx

2 )
=n/(27) /0 sin (A * sin(z)) cos (cgmse) sin(z) cos(02)dx

27 .
+n/(2) /0 cos (A * sin(z)) sin (cgm“) sin(z) cos(6s)dz

27 .
+n/(2m) /0 sin (A * sin(z)) cos (cgmse) cos(z) sin(6s)dz

+n/(2m) /0 i cos (A * sin(z)) sin (cgme) cos(z) sin(f2)dz

=nJ1(A) cos (cgom) cos(62)
+0+0+0=
Lock-ingy, ) = nJ1(A) cos (cZ”ise) cos(62) (3.19)

27
Lock-ingos(z) = / (I sin®(Cl,) + I cos*(Cl.)) cos(z + 02) /(2m)dx
0

27 .
+ 77/ [sin (A * sin(z) + )] cos(z + 02)/(27)dx
0
=+0+4+0—nJi(A)cos (cgme) sin(fy) — 0 =
Lock-inog () = —1J1(A) cos (cZOise) sin(62) |, (3.20)

where Ji(A) is the first kind of Bessel function of order 1. The factor of
1/(2m) normalizes the integrals to DC level, as the integration interval
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is 2m. Even though the equations look complicated, the only thing that
varies during an experiment series is cos (cg"“e), taking on a new value for
each 33.333kHz cycle. The value varies between -1 and 1 depending on the
cgom value. Making numerous measurements and plotting Lock-ingy, (4
as function of Lock-in ;) gives a straight line with slope (—1/tan () =
tan(90° 4 67)). An example of this is plotted in fig. (3.8).

Lock-in ., (MV)
75
e2
el
— % ~—Lock-in _,(MV)
“
9.///4/

Figure 3.8: Plot of values measured by the lock-in amplifier at the fundamental
frequency (33.333 kHz). The position of the measured points on the straight line is
determined by the size of cos(c°**¢). The angle 6 is an electrical phase chosen by
settings on the lock-in amplifier.

The value of
nJ1(A) cos (cg"ise) (3.21)

is determined for each measurement point by making a projection onto
the straight line. The set of projected values is called Styndamentai-

While the signal is detected by the lock-in amplifier, a second lock-in
amplifier also receives the signal. As the cable length is very small (~
10em) compared to the wavelength of the fastest oscillations (= 66, 666k H z =
4.5km for the 2-harmonic) both lock-in amplifiers receive the same signal.
The second lock-in amplifier is set to detect the 2-harmonic. That is, it
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multiplies the input signal with sin(2wt + @ + 63) and cos(2wt + 0 + 63)8,
respectively. The resulting DC-levels are

2w
Lock-ingy(24) = /0 (I sin®(Cl,) + I cos®(Cl.)) sin(2z + 63) /(27)dz
2w
+ 7]/0 [sin (A * sin(z) + cZOise)] sin(2z + 603)/(27)dz
27
=n/(2n) / sin (A # sin(zx)) cos (cgme) sin(2z) cos(03)dx
0
27
+n/(2m) /0 cos (A x sin(z)) sin (cg"ise) sin(2z) cos(03)dz
27 .
+n/(27) /0 sin (A  sin(z)) cos (<2°°) cos(2z) sin(83)dz

27
+n/(27) / cos (A * sin(z)) sin (cg"ise) cos(2z) sin(f3)dx
0
= 4040+ 0+ nJz(A) sin (c**) sin(fs) =
Lock-ingy(94) = 1nJ2(A) sin (cg"i“) sin(6s) (3.22)

27
Lock-ingyg (o) = / (11 sin?(Cl,) + I cos*(Cl,)) cos(2z + 03) /(27)dx
0

27 .
+ 77/ [sin (A * sin(x) + ¢3**¢)] cos(2x + 63)/(27)dz
0
=40+ nJo(A)sin (cgom) cos(f3) —0—0,=
Lock-ingos(2z) = 1J2(A) sin (c°**) cos(6s)

(3.23)

where J5(A) is the first kind of Bessel function of order 2. As for the
measurements of the fundamental, numerous measurements of the second
harmonic are made and a plot of Lock-ing 95) as function of Lock-inggs2z)
is made. This gives a straight line with slope tan(f3). Projecting the
measurement point onto the line gives a set of value for the size

nJ2(A) sin (cZOi“) ) (3.24)

5The different phase 63 for the second lock-in amplifier is because the phase of the
internal oscillator in the lock-in amplifier can be adjusted compared to the phase of
the reference TTL signal the lock-in amplifier receives from the signal generator.
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called S5 parmonic- As there was made one and only one measurement of
the 2-harmonic for each measurement of the fundamental, the two sets
S fundamental @34 S2_parmonic can be combined into a single set Syt by
setting

Stotal,i = {Sfundamental,iaSQ—harmom'c,i} V’i, (325)

where 7 is the index for the measurement. As the measurements of the
fundamental and the 2-harmonic where done simultaneously, this set cor-
responds to values of

Siotati; = n{Ji(A)cos (c[%5¢), Jo(A)sin (c}5*)}, (3.26)

noise
P
values of 7. Notice that Cpr® for a given i is the same for the fundamental

and for the 2-harmonic measurement. When the whole set Syy;4; 1s plotted
as {z,y} values, the result is an ellipse, as

) (J1 (A) cos (cgj’;se))Q (JQ(A) sin (cgj’;se))Q

a? b2

where the phase noise ¢ is a randomly different constant for different

1,(3.27)

n +

when a = nJ1(A) and b = nJo(A). An example of Sy is plotted as
{z,y} values in fig. (3.9).
From the plot of the set Syq (the ellipsoid) the experimental value of
b/a is determined” using the iterative polar fitting procedure. The
constant A is then determined by solving the equation

b Jp(A)

ATy (3.28)

numerically. Now the basis assumption about cg"ise being a different
constant for each oscillation of the 33.333 kHz function can be justified.
If cf},"ise changes during an oscillation, the angle o® on fig. (3.9) for
the measured point on the ellipsoid will change. But the point will still

"The ellipsoid fitting procedure is non-trivial and a description of the procedure is
given in appendix A.

8The angle « is equal to c2°**® modules 27 if c°** is constant during the measure-
ment of a point.
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\Z

-harmonic

0.04

Ja—> "_'6?'1 5Vfundamental

-0.04

Figure 3.9: Points on a measured ellipsoid with a mathematical ellipsoid fitted onto.
The fitting procedure is described in appendix A. The vector pointing to a measured

point illustrates the angle (). When c2°**® is constant during the measurement of a
noise

point, « is equal to cg modules 27.

lie on the ellipsoid, unless the change of cg"ise is significant enough to

affect the radial value of the ellipsoid. This seems not to be the case, as
the ellipsoids measured looks like mathematical ellipsoids with an added
stochastic error.

The mathematical accuracy of determining A by measuring b/a is
determined by the variation of fgﬁg with A. If fgﬁg was independent of
A, it would be impossible to determine A from the measured b/a value.

To show that the value of ﬁgﬁ% indeed depends on A (in a one to one

manner in the range of interest) a plot of fgﬁg is made in fig. (3.10).
The value of A is varied between 0 and «. This variation of A is larger
than the variation obtainable experimentaly® and the plot demonstrates
both jfgﬁg ’s strong dependence on A and it demonstrates the function is
one to one in the range of interest.

The measurement of an ellipsoid is made for different values of Agjectric-
For each Agjectric value the amplitude A of the induced phase change is

9The experimental amplitude of A is limited by the LiNbO3 phase modulator. If a
higher electrical modulation voltage is used the switch might be permanently destroyed
by a short circuit.
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L(A) / J,(A)

1.5
1.0
0.5
0 A(n)
0 0.2 04 0.6 0.8 1.0
Figure 3.10: The plot shows the value of fgﬁ; depends strongly on the value of A.

The plot also shows the function jfgﬁg is one to one for A € [0 : 7).

determined by fitting an ellipsoid to the measured points and then solving
eq. (3.28) numerically. The value of 24 is plotted as function of 2A¢ectric
in fig (3.11). The factor of 2 converts the amplitude values into peak to
peak (P-P) values. As the modulator is made using a Pockels material
(LiNbO3) the points (2A¢ectric, 24) should lie on a straight line going
through zero.

0 1 2 33407 4 VP-P(V)

Figure 3.11: Phase shift as function of modulation voltage measured at 1550.009 nm.
The points are fitted with a straight line going through (0,0). Vi is the x-coordinate
for the point with y-value 7. The plot shows V. = 3.407 £+ 0.006 at 1550.009 nm.

The value V; for the LiNbO3 modulator is found as the x-coordinate
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of the point (V;,1) on the straight line. Making the same approach for
different wavelength of the optical light, V. vs. A has been determined.
Even though the value in search is V:(\), a plot of the underlying physical
value (x(?)())) is more informative. The connection between x(?)(\) and
Vz(A) is found by rewriting eq. (2.20) into

()
~Av,(\)’

xP () (3.29)
where d is the electrode-electrode distance, 1 is the length of the mod-
ulated waveguide and ne(A) is the extraordinary index for the uniaxial
crystal LiNbO3 when no electric field is applied to the crystal. The con-
finement factor is set to 1, as the waveguide in Li NbOj3 is made by proton
exchange, i.e. the core and cladding materials are identical for non-linear
purposes. The factor ¢ describing the electric field in the nonlinear region

is also equal to 1, as the material between the electrodes is uniform (it is
LiNbO3). The formula for ng()) is found in [6].

0.099169
= 1/4.5820 + ————— " — 0.02195)2. .
ne(A) \/58 0+ v5—ooaaz3 ~ 0021957 (3.30)

The refractive index dispersion of LiNbOs is similar the refractive index
dispersion of glass (Si02). ne(A) for LiNbO3 and n(X) for SiOz (the
Sellmeier equation [7]) are plotted in fig. (3.12).

As the length 1 and the distance d are unknown (but constant with wave-
length), x?(\) - 1/d is found instead of x(?()). The values are listed in
table (3.1).

This data is plotted in fig. (3.13) with a fitted function. The fitted func-
tion (ar|A — A¢|F’|)!0 is used to determine the value of V; when curves
of x®®(\) are made in chapter (6). When measurements are made for
a single wavelength, V; from the table (3.1) is used directly. The val-
ues on the right vertical axis on fig. (3.13) are found by assuming
xP(1550nm) = 359.4pm/V, as is the case for wafers from [6]. The
right vertical scale in only shown to give an easy overview of behaviour
of x(#(\) and should not be used for anything else.

0The function type is chosen as it gives a nice fit. There is no physical reason for
the chosen function.
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1.452
F2.160
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1.448 o
S F2150Q
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Figure 3.12: The refractive index dispersion for SO, [7] (black curve) and for
LiNbOs3 [6] (red curve).

V. for LiNbO3 modulator
Wavelength | V; +1 [ x®.1/d £ 2
(nm) V) (nm/V)
1280.03 2.663 0.016 515.9 2.7 2.2
1300.02 2714 0.017 514,0 34 29
1320.03 2.762 0.017 512.6 24 19
1379.981 2915 0.018 507.3 1.9 14
1399.986 | 2.965 0.018 | 505.8 2.4 1.9
1419.994 3.027 0.018 502,4 1.3 0.8
1480.003 3.183 0.019 497.5 1.3 0.8
1530.004 3.341 0.020 489.7 1.2 0.7
1550.009 | 3.407 0.021 | 4864 0.9 04
1619.99 3.659 0.022 472.9 1.3 0.8

Table 3.1: The +! error value includes both the reproducibility error and the sys-
tematic error (see appendix B.2). The % error value is only the reproducibility error.
The 4! uncertainty should always be used except in plots of Vi vs. A, where both =+!
and %2 should be shown.
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Figure 3.13: The blue bars are the uncertainty directly from the fitting of straight
lines like fig. (3.11). The blue bars can only be used to evaluate if the fitted line is
trustworthy. In all other cases the red uncertainty should be used. The red uncertainty
takes all uncertainty contributions into account (see appendix B.2). The right vertical
axis is only included to give an easy overview, as the scale is probably off by a linear
factor.
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3.4 Measuring on a sample by modulating on
both arms.

3.4.1 The optical setup for section (3.4).

The non-linearity of a sample is determined by modulating both arms
of the MZI at the same time. The same electrical sinus signal is used
for both arms, however it is attenuated, phase adjusted and possibly in-
verted for the Li NbO3 while it is amplified and possibly combined with a
DC level for the sample. The setup is drawn systematically in fig.(3.14).
Even though the setup looks complicated, there have only been added
two more optical components compared to the setup used to measure V;
for the LiNbO3 phase modulator. The reused optical components are
adjusted as for the LiNbOj3 calibration experiment described in section
(3.3.1). The attenuator has been moved to the other arm, as the loss in
a sample is bigger than the loss in the LiNbOs3 phase modulator. The
sample is a straight buried waveguide covered by an electrode (see fig.
3.15). The sample acts as a Pockels!! phase modulator in the setup.
The polarization controller before the sample adjusts the polarization of
the light, such that it is either TE or TM polarized when it propagates
through the sample.

3dB Coupler

Upper arm

3dB Coupler Twister LiNbQ, Twister 3dB Coupler

Twister
|~@1550 nm phase .AOA. @1550 nm__Unused

Polariser

.A.A. ||
J— modulator

i
i
/\ Twister ! Lower arm
Unused i Sample Photo
.--M Invsrter (OH:OﬁI‘) — ! under test Srope diode
+phase contro ; - T
; JT‘T| {AC+DC [1:20059 Lock-in amplifier
| ocketn ampier} 1 combiner | TAC-probe 1 T 7

Signal L P ; Lock-in H
generator <| AC amplifier |> T 1:4164@ | | ooiifier i
H DC generator | (33.333 kHz T i

H
N e L

Figure 3.14: The MZI setup used for determining the non-linearity of the glass
samples. The phase of both arms in the setup are actively modulated.

"Either a pure Pockels effect or a Pockels effect induced by a Kerr effect combined
with a high voltage DC-field (See section 2.3).
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3.4.2 Modulation signal from the LiNbO3; modulator.

The phase modulation of the upper and lower arm are ¢1(Epoq,1) and
$2(Emod,2), respectively. The phase modulations arise from the non-
linearity of the material (se chapter 2), that changes the material refrac-
tive index because of the electric field. As LiNbOs3 is a Pockels material,
the phase change in the upper arm is a linear response to the applied
electrical signal. The electrical signal used is a sinus signal. That is

b1 (AZeTCgin(wt +601)) = SinpA1 sin(wt + 0;). (3.31)

The i, is a sign determined by the inverter, i.e. s, is +1 when the
inverter is turned off and s;,, is —1 when the inverter is turned on. The
electrical phase (01) can be adjusted using the phase adjuster. The con-
stant A; can be determined, as V; is known for the LiNbO3 modulator
(see table 3.1) and as the amplitude (A§!¢“r%) of the modulation voltage
is measured. That is

electric
S i

Ay = —
1 T A

(3.32)
The sign of the right hand side of the equation was not determined, when
Vi was measured. The sign depends on the orientation of the LiNbOj3
crystal inside the phase modulator. The sign is determined by a mea-
surement described in section (3.5.4). When the signal from the signal

generator is chosen as A§¢“gin(wt + 6;) the phase modulation (¢1)
induced by the LiNbO3 modulator is

Aelectric

sin(wt + 0y). (3.33)

¢1 = —SipyT*
™

3.4.3 Modulation signal from the sample.
Pockels material.

The sample in the lower arm can be made of either a Pockels or a Kerr
material. In both cases the change in phase (¢2) is due to a change in the
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effective phase refractive index (Angcsf) of the waveguide. The change
in phase is
2lsample7T
$2=——
where X is the wavelength of the light and ls;mpie is the length of the
affected waveguide. The formula can be proven by looking at a 27 phase
shift. A 27 phase shift occurs when the light is delayed by a wavelength,
that is the optical path length (Isampie * (ngerf + Angerr)) is increased
by A. This is exactly what the formula says, as inserting ¢o = 27 and
lsample * Ang orp = A fulfills the equation. As the phase shift is linear with
the change in refractive index, the formula is proved. The refractive index
(ng.eff) is the effective phase refractive index of the waveguide when it is
not affected by an electric field.

It is normally'? assumed that the length (Isampte) of the affected
waveguide is equal to the length of the top electrode (see fig. 3.15).

An¢’eff, (3.34)

Electrical signal

[

Figure 3.15: Sample with a straight waveguide affected by an electric field. It is
assumed that only the waveguide directly under the electrode is affected by the electric
field, i.e. rim effects at the electrode edges are ignored. The introduced error is
minimal, as the thickness (dsqmpie) of the sample is ~ 10pm and the length (Isampic)
of the sample is ~ 10mm (a factor 1000 bigger).

If the sample is a Pockels material the refractive index change (Ang ¢ (E))
due to an electric field (E) is (see eq. 2.13)

An¢,eff (B) = Pcorexg);e/'r%,bulk,0,core - Ecore, (3.35)

!2The assumption is applied for all samples but for photonic crystal (PhC)
waveguides (see fig. (B.8) in appendix B.3.
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where I'¢ore is the confinement factor too the non-linear medium, 7.4 pyik 0,core

is the bulk phase refractive index of the non-linear medium and XC?M is
the second-order nonlinear coefficient. The phase change (¢f°%*°!5(E))
induced by the electric field due to the second-order nonlinearity is found
by combining eq. (3.34) and eq. (3.35). That is

(2)
¢§ockelS(E) _ 2 sampteTL coreXcore Epre. (3.36)
>\n¢,bulk,0,core

When the electric field is a sinus function (A€ /d g, sin(wt + 62))
the phase change for a Pockels material is

9 T (2) .
gockels _ sa)\mpleﬂ' coreXcore . Agledmcg/dsample sin(wt + 02), (337)
¢ bulk,0,core

where Agl“t”c is the amplitude of the AC voltage applied, ¢ is the lin-
ear correlation between applied electric field and the electric field in the
core material (see section 2.3, the derivation of eq. 2.20) and dsamplel?’
is the distance between the top and bottom electrode. The amplitude of
the electrical function (A5 sin(wt + 6)) is measured using a lock-in
amplifier (see fig. 3.14). The AC amplifier enhances A" to approxi-
mately 400Vp_p in a typical measurement. Doing so the amplifier delays
the signal compared to the signal it receives from the signal generator.
The electrical phase (62) is therefore in the starting point not equal to
the phase (61) of the electrical signal on the LiNbO3 phase modulator.

Kerr material.

When the sample is a Kerr material, the change in refractive index is (see
eq. 2.15)

iy
An(E) = 2% . g2 (3.38)
2Mgeff,0
The electrical field is a combination of three fields. A poled in DC-field
(Etrozen—in), an applied DC-field (Vpc/dsampie) and an applied AC-field

13The voltage applied (A§°°*"i®) is divided by the electrode-electrode distance
(dsampie) to determine the electric field. Doing this is correct when there are no free
charges between the top and bottom electrodes, that can shield the applied voltage.
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(Agheetric | pmpie sin(wt + 05)). The phase modulation in the lower arm is
therefore

' 21 3 (3) Aelectric
é(e'r'r (Aglectmc’ VDC) _ saT;pleﬂ' E Xav ( d2 sin(wt + 92)
Ngeff,0 sample
Vbe ?
+d + Efrozen—in)
sample

3lsample7'r X((gz) <

A TNgeffo

Aelectric

2
sin(wt + 92))

~

dsample

~~

frequency 2wt and zero,

as 2sin?(z) = 1 — cos(2z)

A% 2
+ (d = + Efrozen—in)
R sample

>y

~~

frequency zero

Aelectric
+2

dsample

i Vi
Sln(’wt + 92) ( pe + Efrozen—in) )

ds ample

7

-~

frequency wt

(3.39)

where Vp¢ is the DC voltage applied, X,S?) is the average third-order non-

linear coefficient'* and Efrozen—in is the frozen-in electric field (possibly
due to poling, see section 2.4).

' The average x® is confinement factor weighted, see section 2.3.
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3.5 Method for measuring x¥, x® and
Efrozen—in-
3.5.1 Detection using a lock-in amplifier.

The signal detected by the photo diode is (see eq. 3.14)

I = I;sin®(Cl.) + I, cos?(Cl,) + 2/I I3 sin(Cl,) cos(Cl,)
.sin [(’Onoise(t) + ¢1 . ¢2] .
(3.40)

where ¢ is the phase change induced by the LiNbO3 modulator (eq.
3.33) and ¢, is the phase induced by the sample (eq. 3.37 or eq. 3.39).
The signal is detected by a lock-in amplifier that also receives a reference
TTL signal from the signal generator. From the reference signal, the lock-
in amplifier generates an internal sin(wt + #3) function and an internal
cos(wt + 63) function with the same frequency as the reference function
but with a different phase (€3). The phase (f3) can be adjusted on the
signal generator.

The function of the lock-in amplifier is described in section 3.3.3. In
this experiment the integration time slot on the lock-in amplifier is always
chosen to be equal to one period of the signal from the signal generator.
That is, when the frequency of the signal from the signal generator is
33.333kH z, the time slot is chosen to 30us and when the frequency of
the signal from the signal generator is 200kHz, the time slot is chosen
to bus. As the time slots are much shorter than the oscillation of the
noise, ©"**¢(t) is replaced by a constant cgme, that is different from
measurement to measurement. This approximation was justified after
the derivation of eq. (3.28) in section (3.3.3).

3.5.2 Measurement scheme used.
Overview.

The lock-in amplifier phase (63) is adjusted by modulating the phase by
the sample only (i.e. the electric field at the LiNbO3 modulator is set to
0). The absolute value of the lock-in output Lock-inggg(;19,) is averaged

over a long time. This value (Lock-ingggziqug)g “) is minimized by adjusting
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the lock-in phase (f3). Eq. (3.48) shows that the value is minimized when
03 = 05 or 03 = 05 + .

The phase (6;) for the electric function for the LiNbO3 modulator is
then chosen by applying a modulation to both arms using the sample and
the LiNbO3 modulator. The value Lock-in?g:&’emge is again minimized
and just after eq. (3.53) it is shown that the value is minimized when
01:92 OI‘91=92+7T.

The amplitude (a}) and sign (8;n,) of the phase modulation from the
LiNbO3 modulator is then adjusted so the time average of the absolute
value of the other lock-in output Lock-ingy (. is minimized. As shown in

section (3.5.2) the value Lock—ingilif(’;;’ °7%9¢ is minimized, when the x(%)-
type phase modulations in the two arms are exactly equal. This equality
is used in section (3.5.3) to determine the non-linearity coefficient (x(?))

and (x®) and the frozen-in field (Efrozen—in)-

Choosing the phase 0.

To adjust the internal phase (63) of the lock-in amplifier, the modulation
from the sample is maximized by adjusting the DC level on the sample
and the modulation from the LiNbO3 modulator is set to 0. The general
phase modulation (¢2) in the lower arm is a} + a sin(z) + @) sin(2z),
where £ = wt + 62. The phase modulation is either due to modulation on
a Pockels (see eq. 3.37) or a Kerr material (see eq. 3.39). Substituting 03
with 63 = 03 — 0> the output (Lock-ingin(;1¢;)) from the lock-in amplifier
iSl5

m
Lock-ingin(z48) = / (I sin®(Cl,) + I, cos®(Cl.)) sin(z + 03)/(27)dz

-

+n /ﬂ [sin (—(;52(:17) + cZOise(t))

-

sin(z + 63)/(27)] dz
77/ [Sin (—all sin(z) — a) sin(2z)

—T

+ cneise (g) — ag) sin(z + 6}) /(27r)] dz

15In  the equation derivation there is made extensively use of
the two formulas sin(A + B) =sin(A) cos(B) + cos(B) sin(A) and
cos(A + B) = cos(A) cos(B) — sin(B) sin(A).
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= nsin(cl7°(t) — ab)

™
/ cos | —a} sin(z) — d sin(2x)

v

—T N~

< odd ,

L even

sin(z) cos((%,);i—gos(m) sin(ﬂg)J /(2m) | dz

e

~~
odd even

+n cos(cgme (t) — aé)

™
/ sin [ —a! sin(z) — a sin(2x)
o < o?d,d ,

L odd

sin(z) cos(0§l+gos(ac) sin(OQl /(27) | dz.

~~
odd even

(3.41)

The integrals limits are symmetrical around zero. The value of a sym-
metrical integral of an odd integrant is 0. This observation simplifies the
equation for the lock-in output to

Lock-ingp(z 40, = 7 sin(cg"ise(t) — a}) sin(6})
/ cos (—all sin(z) — a sin(2x)> (:023(30) dz
- ™

+n cos(cg"ise(t) — ab) cos(6})

/7r sin (—all sin(z) — ab Sin(2$)) sin(z) dz.

. 2

(3.42)

The two integrals in eq. (3.42) are not analytically solvable, but the size
of the integral can be estimated. The constants a}, a} and a} all arise
from a phase modulation from the sample. As the phase modulation
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a}'6 is no more than 7/10 in the experiments, it is assumed the Taylor

expansion of sin(z) = z and cos(z) = 1 — 22/2 can be used to compare
the size of the integrals. That is

/7T Cos (—all sin(z) — ab sin(2x)> CO;(w)d:v

. ™

I5 cos (alla al2)

Q

/w (1 — (a! sin(z) — a} sin(2z)) /2) cos(z) ,

-7
= —ald,/4 (3.43)
. i
Lgn(al,dl) = / sin (—all sin(z) — ab sin(Zx)) Sl;l(x)dzv
™

2 /_7; (all sin(z) — a sin(2a:)) 311215:10) dz
= al/2. (3.44)

As a, < /100 in the measurements, |I5cos(a), ah)| < |Iosin(al,ab)|. The
absolute value of the measured output from the lock-in amplifier is aver-
aged over the large timespan T, that is

T
abs,average
Lock-i Mooy = 0| /0

sin(cg"ise (t) — aé) sin(03) Iy Cos(all, al2)
+ cos(cg"ise(t) — ab) cos(0%) Insin(al, db)| dt/T.
(3.45)

The noise term (c[;**¢(t)) is uniformly distributed between 0 and 2 mod-
ules 27 and the integral is therefore

27
Lodeinf 5 = ol [ sin(r) sin(65)Facn(a )
0

s1n(:c—|—6’ )

+ cos(7) COS(9§,)12 sin(a'lla al2) dr/(2m)

2/rln| (15 (08) 1 F2cos(a} ab)| + | cos(04) | Fosin(at , ab) ) -
(3.46)

Il

5By inspecting eq. (3.39) it is seen a is smaller than a},

as all/aé =4(Vpc + Efrozeniindsample)/AglECt'ric.
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The size of the absolute value of the other lock-in output (Lock—insin(zwg))
averaged over time is found in a similar way. That is

abs,average

absaverane 3l (|cos(65)|| acos(ah ab)] + | sin(@h)][Lrsin(ah ab)])
(3.47)

Lock-in

abs,average - e e .
cos(a+8,) 15 minimized. As

|13c0s(al, a)| < |Iosin(al, ab)], the value of Lock-in®*%%"49¢ is minimized

The phase 04 = 63 — 6, is chosen so Lock-in

cos(z+6%)

. Y e e . ._abs,average s e
when |sin(f3)| = 0. Minimizing the value of Lock—lncos(m 4o,y maximizes
the value of Lock-in®%%¢T%9€ That is

sin(x+6%)
.__abs,average . A

0 —0or 6 — N LOCk_lncos(z +64) is minimal (3.48)

g=vorvg=m Lock-i abs,average . . '
ock-ing o 1) is maximal.

Choosing the phase 6.

To adjust the phase (61) of the electrical signal for the Li NbO3 modulator,
the electrical signal for the sample is maintained (i.e. it is still maximized)

and the lock-in phase 6} is maintained as 0 or m(i.e. Lock-in®%evérage
3 cos(z+6%)

minimized). The only difference between 65 = 0 and 05 = 7 is the sign of
the output (Lock-inges(;44;)) from the lock-in amplifier. As it is the time
average of the absolute value of (Lock-ingys(z44;)), that is minimized, the
sign of (Lock-inggs(444;)) is irrelevant. The value for 6% therefore chosen
to be 0.

is

The amplitude of the electrical signal for the LiNbO3 modulator is
set to &~ 100mV. Looking in table (3.1) of V;()), this corresponds to a
phase modulation amplitude of = 7/10, i.e. a modulation smaller than
1. The phase modulation from the LiNbO3; modulator is a} sin(z + 6;).
Substituting the phase #; with 8] = 61 — 02, the output (Lock-ing,(s))
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from the lock-in amplifier is

Lock-ingogs(z) = 77/ [Sin (—all sin(x) — ab sin(2z) + a¥ sin(z + 67)

+ ;goise(t) - ag) cos() /(zn)] dz

= nsin(clo°(t) — ab)

™
/ cos | (a¥ cos(8)) — a}) sin(z) — a, sin(2z)

N -
—T g
odd
N~ g
~

even

cos | (a¥ sin(@))) cos(z) | cos(z) /(27) | dz
N N ,

7

"
even even
4
~"
even

Continued on next page. (3.49)

~
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—nsin(c”**(t) — ap)

™
/ sin | (a¥cos(#)) — a}) sin(x) — d), sin(2z)

~ 7
—T -~

odd

~ S

L odd

sin [ (a¥ sin(#))) cos(z) | cos(z) /(27) | dz
~——

~ vl

'
even even
~ J

even

+17 cos(c”*¢(t) — ap)

~

/ sin | (a¥ cos(0)) — a}) sin(z) — d), sin(2z)

N -
— ~
odd
N _

L odd

cos | (a} sin(#))) cos(z) | cos(z) /(27) | dx
~——

~ J

v~
even even
S
'

even

+1) cos(clp*(t) — ap)

~

~ 7
- ~~

odd

~ S
v

/ cos | (a¥cos(#)) — a}) sin(z) — d sin(2z)

even

~ 7
~”

even even
S
'

even

sin | (a¥sin(#))) cos(x) | cos(z) /(27) | dz =
——

~
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Lock-ingee(z) = nsin(cgme(t) —ab)

/W [Cos ((aqf cos(01) — a}) sin(z) — aj Sin(zx))

—T

cos ((af sin(61)) cos(z)) co;(x)] dzx

™
-+ cos(cp"*(t) — ap)

[ Joos (@t cos(8h) — al)sina) — ab sia20))

—T

sin ((a? sin(6})) cos(z)) 00257(:”)] dz. (3.50)

_ To determine the size of the two integrals in eq. (3.50), it is noted that
the constants a}, a¥ and a) are small. Sinus and cosine are therefore
Taylor expanded, which results in

Iycos(dl, a,db) = /[w%@%w@rwbmurwbmwo

-7

cos ((af sin(61)) cos(z)) co;(w)] dz

™

(1= (@t ostoty - bysingo) ~ absingzo))” 2)

-7

Q

(1 — (a¥sin(8}) cos(z))” /2) Cos(w)] dz

= 1/2(a%cos(8)) — a})dl, (1 — (a¥ sin(0£)/4)2> s

~

~ 1/2(a¥cos(0)) — a})aym (3.51)
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™
Loonsincon(al, at,ab) = / [cos ((af cos(8}) — a}) sin(z) — a sin(2a))

-7

sin ((af sin(6})) cos(z)) CO;(:C)] dx.

(1= (@t eostey - abysingo) — absingzo))” 2)

-7

Q

((a¥ sin(6}) cos(z))) Cozsff)] dw

_ (1 . (ay cos(8}) — all)Q /8 + (db)? /8) asin(0))m

~

~"

~1

~ alsin(0))m (3.52)

The absolute value of the lock-in output (Lock—incos(m)) is averaged over
a long timespan, as done from eq. (3.42) to eq. (3.46). That is

Lock—inzg:&gemge = 2/x|n| <|I3cos(al17 ay, a12)| + ‘Icos,sin,cos(alla af, a )|> .

0l (Jat cos(@}) — a|lab] + et sin(8)])  (3.53)

Q

Asa¥ > a) > a), the size of Lock—in'clg:é;’emge is minimized when sin(6) =
0. That is when (61 = 62) or (61 = 62 + 7). The phase delay between the
signal reaching the sample and the signal from the signal generator is as
previously noted due to the AC-amplifier (see fig 3.14). The approximate
size of the phase delay (63) has been measured and (65) is small. Choos-
ing the phase 6; close to 0 (i.e. close to the phase of the signal from the

signal generator) ensures (6; = 65).

Adjusting the amplitude a!.

With the phases 0] and 64 adjusted to 0, the size of the phase modulation
on the LiNbO3 modulator is adjusted until the absolute value of the lock-
in output (Lock-ingy(,)) averaged over a long timespan is minimal. The
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other output (Lock-ingeg(,)) from the lock-in amplifier is then

Lock-ingy(y) = 77/ [sin ((aqf — a}) sin(z) — db sin(2z)

n c_gm'“(t) - ag) sin(z) /(27r)] dz

= nsin(cy”**(t) — ap)

- .
/ cos | (a¥ — a}) sin(z) — @l sin(2z) sin(z) dz
,W ~ — > 27

< odd _ odd

v~

even

+1) cos (e () — ap)

/ sin | (a — a!) sin(z) — @) sin(2z) sin(z) dz

- ~ ~ > 2w
N odd _ odd
L odd
= neos(c*e(t) — ab)
. Iy 1 sin(z)
/ sin ((aqf — ay)sin(z) — ay Sln(2:c)) dz
- L 27

(3.54)

The absolute value of (Lock-ingn(s)) is averaged over a long timespan.
That is

7r .
Lockeingyy ™ = 2/alal| [ fsn (ot — ab) sina) — s sint2e)) “5 | o
-7

sin(z) T
(3.55)
For small values of (a} — all) and alz, the integral can be solved by Taylor
expanding sin(z). That is
.__abs,average 7 u Iy - 1 . sin(;v)
Locleingiiy ™~ 2/min| | ((at — al) sin(z) — a sin(2)) =2 = da

In||a¥ —ak|/m (3.56)
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Equation (3.56) shows that the measured value Lock- 1na‘b5(;‘;’ €r%9€ is mini-
mal and equal, to 0, when a} = all 17 The absolute value of af is adjusted
on the electrical attenuator and the sign of a} is chosen on the inverter
(see fig. 3.14).

To show the solution is unambiguity a little more care must be taken,
as the integral in eq. (3.55) is only solvable when (a% — a!) and a) are
small. Strictly speaking, a), is always small, as it is the 2-harmonic signal
from the sample. The value of (a% — a!) is not always small, as a¥ is
the signal from the LiNbO3 modulator. To show the unambiguous nu-
merical value of the integral has been calculated for —m < (a% —a}) <7
and —7/2 < (a2) < 7/2. The result is shown in fig. (3.16). The figure
demonstrates the unambiguously of the determined value of af.

Integral value
0

0.40 T7]
s ’ 0.04
0.08
w030 /i "‘“‘\\\\\\\\\\\\\\\
—jg 0.25 ’!;h"' \\\:\\\\\\\\\\\ )
=020 “ \\\\\\\\\\\\\ “ Ca 0.20
50.15 y ’“&‘“\\ \\:\\\\\\\\\/nm M‘Q \ \\ © 0.24
o010 V i,‘&‘\\\\\ \\\\\\ ’ ‘ 0.28
\s\}‘\\\‘,w

/!
0.05 agg \

M‘ ) .
0.00 = \‘:“‘ - ° o . ;
-1 N .'

u_y 2 3 s - - - 3

Figure 3.16: The absolute value of the integral in eq. (3.55). The integral value is
only 0, when (a¥ —a!) is 0. Unambiguously is therefore ensured.

3.5.3 Equations for x?, x® and E},ozen in-

Doing the phase adjustments described in section (3.5.2) and (3.5.2) and
the amplitude adjustment described in section (3.5.2), an unambiguous

17 As Lock- 1ngll:(:)vemge is the absolute value of Lock-ingin(,) averaged over time, it is

positive. The smallest possible value for a positive value is 0.
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minimization has been made, that ensures
at = at, (3.57)

where a? and a! are the phase change amplitude at the fundamental
frequency in the upper arm and lower arm, respectively. The phase change
in the upper arm is known (see eq. (3.33) in section (3.4.2)). For a
Pockels material, the phase change is given by eq. (3.37). Eq. (3.57)
is fulfilled when and only when

lectri @
| Aglectric 2 sqmpte™T core X core Aélectric. /g
—SinyT - - A T2 §/ sample =
V7r N, bulk,0,core
lectri
(2) _ Adsaﬂufllenfﬁ:bu”C’O’COTeAf o
core - —Sinv (3.58)

2lsa.mplech‘e‘/;r Aglectricg

All the parameters on the right hand side of eq. (3.58) are measured
values and ngne is then determined

For a Kerr material, the phase change is given by eq. (3.39). a} is the
amplitude of the fundamental part of the phase oscillation. Eq. (3.57) is
fulfilled when and only when

A(lﬁlectric 3lsample7r ng}) Aglectric ( VDC’ )
—SinyT - = 2 +F —in | =
e V7r A Ngeff,0 dsample dsample frozen—in
VDC Adsam leNgeff OA?leCtMc
3xB) [ 2= + Efrozen—i = —s peee]JOTL 3.59
\ch dsample + frozen—in ] Sinv QIsampleVWAgleCt”c ( )

:);%‘)f
All the parameters on the right hand side of eq. (3.59) are measured for
multiple values of Vpo. The phases (03) and (1) are adjusted for the
first measurement!'® and a% is adjusted for each Vpc-value.
The determined values of the right hand side of eq. (3.59) vs. Vpc/dsampie

is a straight line with slope 3)&3). The measured line crosses the x-axis

(y = 0), when Vpc/dsampte = —FE frozen—in- An example of a measure-
ment is plotted in fig. (3.18).

181t is only necessary to make the phase adjustments described in section (3.5.2) and
(3.5.2) for the first amplitude (a}) adjustment, as the optimal phase values for 83 and
61 are independent of Vpc. The optimal phase condition is (03 = 61 = 6-).
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3.5.4 Sign of LiNbO; phase modulation.

To determine the sign in eq.(3.32) two measurements where made on the
same sample. The non-linear coefficient (x(?) and (x(*)) and the frozen-
in field (Ef,ozen—in) Where measured by both the Bragg grating method
(see appendix C) and by the DC shifted MZI method. Even though

the Bragg grating method is not extremely accurate, the sign of X,(l?;) is

trustworthy. The sign of Xé‘:’,) for the sample was measured to be positive,
i.e. the refractive index increases when an external field is applied. The
measurement of the Bragg wavelength (Aragg(V) = An(V)) vs. external
applied DC-field is shown in fig.(3.17). The pitch (A) is the period of the

phase mask. As the period is a distance, A is a positive value.

1532.24

1532.238 -+ \ ¥ .
_ 1532.236 .
1532234 ,
15322321 ,

1532.23 - i

Bragg wavelength (nm

1532.228

E3

1532.226

Il Il
-1 0({9 —500 0 500 1000
oltage (V)

1532.224 : ‘
-2500 -2000 -1500

Figure 3.17: Plot of Bragg measurement results. The Bragg wavelength and thereby

the refractive index clearly increases when a DC-field is applied. The xg‘? is therefore
positive. The measurement is for TE-polarized light.

The DC shifted MZI method was used for measuring on the same sample.
The result is in fig.(3.18).

The chosen negative sign in eq.(3.32) is in the derivation brought all
the way to negative sign on the right hand side of eq. (3.59). When
the measured slope for the right hand side of eq. (3.59) is positive, the
determined X((l?q’,) value is positive. This demonstrates that the negative
sign in eq.(3.32) is correct.
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! , ! , ! , ! , ! , ! , !
0.6 4 Data: Sample 4_3_2 ~
Equation: x™(E_) = 3¢ (E_+E, )
0.4 - Weighting: Equal |
Chi*2/DoF = 0.00005
R = 0.99957
§ 0.2 -
3) -24 2 2
x (11.74 +/- 0.57) *10** m*/V’
= E_ . (17.04-05V
E 0.0 4 =
(@
~
Q024 -
x
0.4 L
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Figure 3.18: Plot of DC-shifter MZI measurement results. The slope of the line is
clearly positive. The measurement is for TE-polarized light.

3.6 Accuracy of developed methods.

There are always two distinct types of errors connected to a measurement
method. The first type is systematic error due to finite good calibration
of the applied measurement instruments. The second error type is the
reproducibility error, i.e. the derivation between repeated measurements
that should be totally identical. Both error types are investigated in ap-
pendix B. The results found are summarized in table (3.2).

To make absolutely sure, that the measurement method works correctly
and that no factors have been forgotten in the mathematical derivation a
measurement was made on a pre-caracterized poled fiber. The fiber was
made and characterized by Niklas Myrén [8]. The results measured by
Niklas Myrén is shown in fig. (3.19).
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Accuracy of developed methods.
Measurement Wavelength systematic Systematic Reproducibility

type. €rror. €rror. €rror.
x-axis y-axis y-axis
Vi 10ppm 6.1%o < 5.5%0
X2 10ppm 4.6% 5.3%
x® 10ppm 4.3% 3.1%

Table 3.2: The errors are determined in appendix B. Both the systematic and the
reproducibility errors for the measurement of V, are hard to reduce. The systematic
error of the x® and x® measurements can be reduced by using a more accurate
voltmeter. To reduce the reproducibility error for the X(2) measurement, the optical
loss in the samples must be reduced. The reproducibility error for the x(?’) measurement
can be reduced by applying an interferometric measurement method for determining
the sample thickness. Such a method would also decrease the reproducibility error for
the x® measurement. The DC-shifted MZI methods detection limit for samples
with a reasonable optical loss (< 10dB) is < V;/100.

To compare the results measured by Niklas Myrén with the measure-
ment made with the DC shifted MZI method, the measured curve
for the phase shift in fig. (3.19) is rewritten to obtain the x() value. The
equation for the phase shift (A¢) is

V + pol
1.0322
where the constant a and pol are determined from the fit to the measure-
ment points in fig. (3.19). The factor of 1.0322 corrects for an adjustment
of a voltage probe measured after fig. (3.19) was made. The origin of the
phase shift is a refractive index change in the waveguide of length ;4.

The phase is shifted by 7, when

Angerp(E)lfiver = A/2, (3.61)

AP(V) =ax*( )2, (3.60)

where A is the wavelength of the incident light. The change in phase is
linear with the change in refractive index and eq. (3.60) can therefore be
written as'?

V + pol
1.0322

!9The phase shift in eq. (3.60) is measured in radians, i.e. in units of 7.

Angeri(E)lfiber2/A = ax ( ). (3.62)
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® Measured phaseshift

8- —— Parabolaafter poling fit of Data4 B
74 Data: Data4 B
4 Model: y=a*(x+pol)"2+level
6+ Chi"2DoF  =0.00124
L R*2 = 0.99985
— 54 a 43233E7  +1.8963E-8
g 9 pol 176714593  +137.43144
S 44 level 137153 017697
=
<
g °
s ,] Poled fiber
o ") Electrode length after poling (present): 41 cm
14 Attenuation very roughly: 10 dB
. n_core = 1.49
0- n_clad =1.46
; Distance between electrodes: 18.6 um
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Figure 3.19: Measured phase change vs. external applied voltage. The phase change
is measured in the unit of radians (= A/2). After Niklas made the measurement,
he calibrated the voltage probe and found that the real voltage is 3.22% higher than
plotted on the graph.

The refractive index change (Ang ¢ f(E)) due to a third order non-linearity
is known from eq. (2.15). Substituting Angy .r¢(E) gives

3xo)

2n¢.ef1,0

V + pol
1.0322
@) _ a*xd*Mgerio
Xad = ar1.03222
fiberi-
(2)  a* pol * d2)\n¢,eff,0
Xef ! = T 1 iper1.0322

(V/d + Efrozenfin)2lfiber2/)‘ =ax ( )2 =

and  (3.63)

(3.64)

where the electric field is interchanged with V/d + E,gsen—in- The equa-
tion was split into a linear part (the eq. for ch)f) and a quadratic term

(the eq. for x(¥). The first row of values in table (3.3) are found by
inserting the values measured by Niklas measured numbers (see fig. 3.19)
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into eq. (3.63) and eq. (3.64).

Comparison of obtained non-linear values.

Measurement ijf)f X(3) Efrozen—in
(pm/V) 10~24m?/v? V/um
Niklas (Polarization unknown) 0.0728 +0.0065  2.63 +0.12 92.0£7.2
DC-shifted MZI (TE) 0.0606 = 0.0025 2.218 £0.092 —91.07 £0.39
DC-shifted MZI (TM) 0.0602 £0.0025 2.415+0.10 —83.07+0.37

Table 3.3: The polarization of the light was not controlled in the measurement made
by Niklas Myrén. The loss is lower for TE polarized light, which means Niklas Myrén
measurements is probably for TE polarized light. The measured frozen-in fields are
very comparable, but the non-linear coefficients deviates more than the uncertainties
can justify. This could be due to the difference in frequency for the applied E-field in
the two types of measurements. Niklas uses a DC-field, while the DC-shifted MZI
method uses an AC-field with the frequency 33.333 kHz. The uncertainties in the
table do not include the uncertainties for lfper, d and ng ¢ as the exact same values
are used when evaluating all three measurement series. The uncertainty of Niklas
measurement only includes the error due to the parable fitting in fig. (3.19). The
difference of the sign for Ef,o.en—in is because the electrodes where interchanged in
the DC-shifted MZI measurement compared to the measurement performed by Niklas.

Measurements where performed on the fiber using the DC-shifted MZI
method. The non-linearity was determined for both polarizations and the
measured non-linearities are plotted in fig. (3.20) and in fig. (3.21). The
difference in the obtained non-linearity values (see table 3.3) is probably
due to the different frequency of the applied fields. Niklas uses a pure
DC-field, while the DC-shifted MZI method measures on a combination
of a DC-field and a 33.333 kHz AC-field?°. This comparison demonstrates
that the derived equations are correct and that the principles of the DC
shifted MZI method is correct.

20In the DC-shifted MZI method, the DC-field takes the role of the poled in field
and the AC-field assembles the modulation field. The combination of a DC-field and
an AC-field gives good predictions for device performance.
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Figure 3.20: Measured second-order non-linearity vs. external applied field. The
measurement is made on the fiber made by Niklas Myrén [8] for TE polarized light.

3.7 DC-shifted MZI method summary.

This chapter and two appendices A and B have been devoted to a detailed
description of the measurement method developed in this project: The
DC-shifted MZI method. To determine if the new method is worth
the trouble, its advantages and possible disadvantages must be compared
to the already established method. Before development of the DC-shifted
MZI method, there were two methods for measuring non-linearities in the
group, a method based on measuring the shift of wavelength for a Bragg
grating inscribed in the sample and a method based on a fiber MZI.
The developed method is based on the old MZI method and the only
real difference, besides the electrical measurement equipment starting
with the lock-in amplifier, is the combination of the externally applied
DC-field with the modulating AC-field. The old MZI method relied on
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Figure 3.21: Measured second-order non-linearity vs. external applied field. The
measurement is made on the fiber made by Niklas Myrén [8] for TM polarized light.

an internal DC field in the sample, i.e. a poled in field. In principle the
old MZI method is identical to measuring only one point on the curve
in fig. (3.18), where the frozen-in field would determine the position on
the x-axis. The position on the x-axis was not measured and the mea-
surement therefore only revealed the obtained ch)f value, not XE;?,) and
not Efrozen—in- However the old MZI method assumed a constant phase
difference of m/2 between the two arms and as was shown in fig. (3.6)
and fig. (3.7) this assumption is not correct, not even in the simple case
where the sample is interchanged with a pigtailed fiber. The newly de-
veloped method takes the oscillation of the phase into account and the
introduction of lock-in amplifier and all the complicated math originates
back to the oscillation of the phase. Unfortunately re-measurements on
samples characterized by the old MZI method could not be performed, as
a previous group member put all samples characterized by the old MZI
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method into the garbage can. The approximate size of the systematic
error due to the wrongful assumption of constant phase difference can
therefore not be determined.

When comparing the newly developed method and the Bragg grating
method four aspects must be considered.

e The accuracy of the two methods.

e How versatile the methods are.

e How directly the measured result determine the size of interest.
e The stability of the methods?!

The accuracy is easy to compare, as the error for fitting a measurement
of Bragg wavelengths vs. electric field was around 8.5% [9]. This should
be compared to the error when fitting measured data points acquired
with the new method, where the error is 1% (see fig. B.17 in appendix
B). This is however an unfair comparison for the Bragg grating method,
as it is the total errors that should be compared. The thickness of the
grown layers varies a couple of percent over each sample and the new
method is therefore, strictly speaking, overprecise, as the error is now
dominated by other sources. The accuracy is therefore improved from
around 8.5%%2 for the Bragg grating method to 5.3%23 for the DC-shifted
MZI method. The great improvement of the new method is not the
reduced error but the greatly improved stability of the method. It was
observed that results measured with the Bragg grating method could vary
by a factor of 1.5 when repeated. This is probably due to a communication
problem between the laser and the optical spectrum analyzer. In contrast
to this there are no stability problems for the DC-shifted MZI method.
The idea behind the Bragg grating method was originally to make a
switchable Bragg grating, where an applied DC-voltage would position

21Stability here refers to reproducibility when a sample is characterized again after
having lied in the drawer for a couple of day.

22The error of 8.5% is obtained from the fitting of the parabola. It does not contain
all the other errors, but as both the systematic and the reproducibility errors found in
appendix B are roughly identical to the errors expected for the Bragg grating method,
the error of 8.5% will be the only dominant contribution

?3The error of 5.3% is obtained by adding the systematic and the reproducibility
errors from table (3.2).



“main” — 2006/6/28 — |16:15 — page 73 — #89

3.7 DC-shifted MZI method summary. 73

the grating at the desired wavelength. Measuring the Bragg wavelength
vs. applied field was the perfect way for determining if the Bragg grating
was moving enough. lL.e. the result determined by the Bragg grating
method was directly usable for the original idea behind the method. The
goal of this project was not to realize a switchable Bragg grating, but to
make a switch based on a MZI. The trouble with the results determined
by the Bragg grating method when used to make predictions for a MZI
device, is the frequency of the applied field. In the Bragg grating method
the field has to be DC, as it takes minutes to make a measurement scan
determining the Bragg wavelength. There can be a difference between
the material non-linearity for a DC-field and the non-linearity for an AC-
field. As such derivation can limit the bandwidth of a device, it is better
to measure the effect of an AC-field, when the objective is to make a
switch. As the DC-shifted MZI method measures the phase change for
an applied AC-field, the method directly measures the size of interest for
the scope of this project. In chapter (6) there was observed a difference
between low frequency and higher frequency modulation, a difference that
the Bragg grating method could not have detected.

The developed method is capable of measuring on all types of single
mode samples?*. If a single mode sample guides light and if electrodes
can be placed, the method can determine the induced phase shift. The
Bragg grating method can only be used if it is possible to make a Bragg
grating in the sample. This was again not a problem for the original
purpose of the Bragg grating method, but to require UV-sensivitity?>
limits the number of usable samples. The breakthrough made in this
project was made in a material (see chapter 6) that is not UV-sensitive
and the versatility of the developed method therefore prooved crucial.

The goal with the development of The DC-shifted MZI method
was to get a working characterization setup in our laboratory. Perhaps the
same goal could have been reached by purchasing some equipment, e.g.
a phase-locked loop could perhaps remove the observed phase noise [4],
but due to the financial situation, the setup had to be made with equip-
ment already available in the laboratory. The goal of making a working

*4The Bragg grating method is capable of measuring on multimode waveguides and
is hence more versatile with respect to the physical dimensions of the core.

25The Bragg grating is made by changing the index of the sample permanently by
shining very intense patterned UV-light onto the sample (see appendix C).
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setup with all sources of error known was reached. The limiting factors
on the accuracy of the developed method is not the non-linear measure-
ment method, but the experimental equipment applied. In particular a
more accurate voltmeter would reduce the uncertainty. As the thickness
is known to vary a couple of percents across the sample, a smaller un-
certainty also requires multiple measurements of the thickness in order
to make a 3D-thickness chart of the sample. As the limits of the ac-
curacy is not directly due to the non-linear measurement method, there
has not been made a comparison with other methods known from the
literature [2,4].
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Chapter 4

Sample Fabrication.

This chapter contains an overview of the sample fabrication technique.
The aim with the chapter is only to give a short introduction to the differ-
ent fabrication processes used and to introduce the nomenclature. This is
used in chapter (5) where the different samples and there characteristics
are described. The interested reader can look in [1] for comprehensive
information about thin film fabrication.

The samples used in this project have been fabricated or post processed

in the Danchip cleanroom. To make a normal sample, the silicon wafer
is oxidized thermally to obtain a thin glass film. Fig. (4.1) shows a wafer
and a cleaved out sample.
The produced glass film is normally very pure and it is known as thermal
oxide (TOX). A layer of high index glass is then grown on top of the TOX
in a plasma-enhanced-chemical-vapor-deposition (PECVD) chamber (see
fig. 4.2), where reaction gases are mixed and ionized. The high index
glass is normally used to as the waveguide core.

7
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Figure 4.1: The left picture shows part of a 4 inch wafer with a structure made on
top. The right picture shows a sample cleaved out of a wafer. Pictures made available
by the COM photographer Lasse Rusborg.

Plasma enhanced chemical

vapour deposition champer.
RF

1 Gas inlet
Shower head

Pressure sensor

O—F

— Pump

Plasma I~ Electrodes

Heaters Substrate

Figure 4.2: Plasma enhanced chemical vapor deposition chamber. Reaction gases
enter a high-voltage radio frequency (RF) field where the molecules are ionized. The
reacting vapor deposits glass at the wafer and other reaction products are pumped out.
The controlled parameters are gas flows, RF frequency and power, temperature and
pressure. Figure is made by Karin Andersen.
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The grown glass can be doped with different elements to obtain the
desired refractive index. The index can for example be doped with Germa-
nium and/or Nitrogen. Both of these dopants raise the material refractive
index. The reaction equations for the glass production are

SiHy(g) + N2O(g) — SiOz(s) + Na(g) + Ha(g) (4.1)
GeHy(g) + NoO(g) — GeOa(s) + Na(g) + Ha(g) (4.2)

SiH,(g) + N2O(g) + NH3(g) — SiON(s) + HyO(g)
+N2(g) + Ha(g)- (4.3)

The reaction equations are not balanced and they should only be used
as guidelines due to the complexity of the plasma reaction. The reaction
speed would under normal chemical circumstances be extremely slow, but
the gases are ionized in the PECVD chamber. The physical properties
of the produced glass depend on various chamber parameters including
pressure, electric effect and frequency and the obvious parameters like
the gas mixture composition. All relevant controllable parameters are
collected in the glass recipe that controls the PECVD while the glass is
made. The reproducibility of the glass layers depends strongly on the ap-
plied recipe and reproducibility is high for the developed standard recipes.
Experimental recipes are normally made by varying the parameters in a
standard recipe to some extent as the reproducibility can be reduced dra-
matically. To compact and stabilize the glass, it is annealed by heating
it to for example 1000°C in a controlled atmosphere and baked in the
anneal chamber for a couple of hours (see fig. 4.3)

The waveguiding structure is made by spinning! a photoresist onto the
core glass layer. The photoresist is then illuminated through a mask and
the pattern on the mask is transferred to the photoresist at development.
The wafer is then etched in a reactive ion etching (RIE) chamber where
glass underneath the photoresist is etched away. In this way the pattern
on the mask is transferred to the deposited glass (see fig 4.4).

1Spinning of photoresist is done by dripping or spraying photoresist onto a spinning
wafer. The thickness of the applied photoresist layer depends on the rotation speed of
the wafer and on how diluted the photoresist is.



ﬁa “main” — 2006/6/28 — |16:15 — page 80 — #96 ﬂ;

80 Sample Fabrication.

Figure 4.3: Silicon wafers being transferred into an anneal oven. The wafers are
usually backed in the oven for 4 hours. The temperature and the atmosphere are
controllable. Picture is made available by the COM photographer Lasse Rusborg.
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Figure 4.4: Fabrication process for making buried waveguides. Photolithography is
used to transfer the pattern from a mask to a photosensitive layer (the photoresist).
The pattern is then transferred to the core by RIE and the structure is finally covered
by a topcladding. This figure is made by Karin Andersen.
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The optical loss in the waveguide depends on both the deposition of
the glass waveguide (the PECVD process) and on the sidewall roughness
(governed by the RIE process). A whole Ph.D. project can be dedicated to
make good lowloss components in a special glass [2]. Finally a top glass is
PECVD grown on top of the waveguide. The top glass is normally either
pure Si02 (hard topcladding) or doped with boron and phosphorus (soft
topcladding). The soft topcladding can flow during anneal and hence
cover the core in a more uniform low loss manor. The hard topcladding
does not float during anneal, but it is better for freezing in an electric
field during poling [3].

Different methods than RIE of the core structure can be applied to
make a waveguiding structure, e.g. the index in the core layer can be
raised by intense UV-light. For UV-written waveguides, the etching step
is avoided and the horizontal index step is introduced after deposition of
the top cladding. The waveguides can either be normal UV written, where
aluminum on top of the waveguide shields the sample except in the places
where index increase is desired. The waveguides are then made by flow
exposure with intense UV light? as shown in fig. (4.5) after the sample
was deuterium loading at ~ 200 bar to increase the UV-sensitivity.

An alternative way of increasing the core index is direct UV-writing [4]
where a laser beam? is focused on the sample and then scanned over the
place where a waveguide is wanted (see fig. 4.5). Waveguides made by
direct UV-writing can ultimately have lower optical propagation loss [5]
than normal UV-written waveguides due to degradation of the aluminum
mask during exposure in the normal process [6].

In this project an Eximer laser was used to make the flood exposure. The laser
emits pulsed 248nm light with a duration of 20 ns and a repetition rate of ~ 50Hz.
The pulse energy is between 100 and 300 mJ and there was normally used 3kJ/cm? to
make the permanent index step.

3The laser wavelength is 257nm cw with a power of 50 mW.
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Normal UV-writting
of waveguides
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of waveguides

257 nm, 50 mW
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Figure 4.5: UV-writing of waveguides. The top figure shows normal UV-writing,
where 248nm pulsed laser light is used to illuminate the core. The index is raised
permanently at the exposed areas. The bottom figure shows direct UV-writing, where a
laser beam is focused down on the sample. The waveguide is then written by translating
the sample at 20 —1000um/s. The sample temperature is kept at —35°C during direct
UV-writing to avoid outdiffusion of deuterium. The spot size on the sample can be
adjusted down to 2.5um FWHM. The figure is made by Michael Svalgaard.
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The horizontal waveguiding property can also be achieved by a pho-
tonic crystal structure [7], where periodicity of the cladding material pro-
hibits propagation of certain wavelength intervals. The photonic crystal
(PhC) waveguide requires very small structures in the cladding, struc-
tures so small, that they cannot be made using normal photolithography
due to the wavelength of the light. The photoresist is instead exposed by
an electron beam (by e-beam writing). An example of a PhC waveguide
is shown in fig. (4.6) together with a simulated transmission diagram for
TE polarized light. The distance between the centers of the holes (known
as the pitch, A) is 425nm in the physical waveguides studied. The hole
diameter is normally given relative to the pitch and the samples have a
relative hole diameter of 272nm.

Transmission (linear)
o
&

0.0 . Aa A

1 f T f
0.12 0.16 0.20 0.24 0.28 0.32

Normalized frequency (A/r)

Figure 4.6: A 2D photonic crystal waveguide is made by etching small holes in a high
index material like silicon (n = 3.407). The periodicity forbids propagation of certain
wavelength regions. This is illustrated with the transmission spectrum calculated by
2D finite-difference-time-domain (FDTD). The transmission calculations where made
by Andrei Lavrinenko.

The final waveguiding mechanism investigated in this project is guiding
by Long-Range Surface Plasmon Polaritons (LRSPP), where the light is
guided as a surface wave on the border between a metal and a dielec-
tric [8]. The metal is a very thin (~ 10nm) gold strip, that is 10um wide.
The mode is a combination of two surface modes, one on each side of the
metal strip (see fig. 4.7).
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MMP A/S

Figure 4.7: Light can be guided as Long-Range Surface Plasmon Polaritons (LRSPP)
in the interface between a metal and a dielectric. The figure is made by Alexandra
Boltasseva.
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Chapter 5

Experimental results.

5.1 Introduction

This section presents the results for samples with a Xé‘:’,) value. The aim
with poling of glass is first discussed to make a frame for evaluating the
obtained results. After looking at the disappointing results for poling
of the normal core glass (Ge:SiON), a possible explanation for the very
large second-order non-linearities reported in the literature [1,2] is given
based on results obtained for sample 3_5_1. The explanation shows that
it is only possible to reach an interesting ch)f value by increasing the

material X,(l?;,) with a factor of 10. The possibilities for changing X((g,) are

described and a number of them are investigated. The most interesting
result is found for silicon rich nitride (SRN), that has a 5 times higher
X((g;) than was obtained for Ge:SiON. It was however decided that not
even an increase by a factor of 5 was enough to make a device usable.

5.2 The goal with the experiments.

The aim with this project was to realize a switch in poled glass, i.e. in a
x®) material where the EO coefficient is obtained by poling. The switch
should be made on a 4 inch wafer and the switching voltage should be
less than 300V. During the project, it was realized that even if the aim
was reached, would there be no interest for such device. To make an
interesting device, the switching voltage should be lowered even further,

87
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as fast 300 volt electrical drivers are hard to make. It is hard to quantify
exactly what requirements would make a switch in poled glass interesting,
but a switching voltage swing less than 100V is a realistic limit. As
described in section (2.3) the voltage can be reduced by using more than
one electrode (see fig. 2.12). Two of the suggested methods can be
applied directly, but applying electrodes on both side of the waveguide is
not realistic as the mechanical properties of an unsupported waveguide
are questionable. As the method of applying a A/4 shift in one waveguide
only reduces the absolute voltage and not the voltage swing, the reduction
due to the applied electrode is only a factor of 2 compared to eq. (2.21),
i.e. the voltage swing is reduced by modulating both arms. The lengths
of the two affected waveguides are limited to ~ 5¢m each by the wafer size
of 4 inches giving a total affected length of ~ 10c¢m. Inserting numbers
together with the reduction factor of 2 due to the dual electrodes into eq.
(2.21) gives

_ 1550nm + 120m * g butk 0.e /1 _ 5 1, 11, Mbulk0es |

Vr ;
3% 0.1m * Xg::’,)Ep X((J,?Q’))Ep

(5.1)

where the electrode-electrode distance has been set to 12um, This dis-
tance is a little low for the normal core glass used (Ge:SiON), as the
tail of the mode will be lost to the wafer and to the top electrode. The
equation can however be used to evaluate if a switching voltage of 100V
is realistic. The frozen-in field obtained by poling in the investigated
samples is 100 — 200V /pm. This field could probably be increased but
it is limited by the breakdown field of glass, that is 850V /um at room
temperature [3].

Assuming a normal index of glass (14 pyik,0,eff = 1.5) and an optimal
frozen-in field of 850V/um combined with a switching voltage of 100V

(3)

requires a non-linear g, coefficient of
xB) = 5.5 1072m?/V?2. (5.2)

The non-linear value is for the poled glass, but we have never seen sig-

nificant changes in the non-linearity due to poling, i.e. the same X((l?{,)

coefficient is measured before and after poling [4,5]. The measured XST:)
value for non-poled samples can therefore be compared with the value in

eq. (5.2) to see if a switch is realisable with the investigated material.



“main” — 2006/6/28 — 16:15 — page 89 — #105

5.3 Increasing the poling field by a charge trapping layer. 89

5.3 Increasing the poling field by a charge
trapping layer.

This first attempt made for reducing the switching voltage in this project
aimed at realizing a larger frozen-in field!. The idea was to include a
charge trapping layer in the structure in an optimal distance from the
core. The glass SiON with a relative high nitrogen dopant level was
chosen as the charge trapping layer. The refractive index of the charge
trapping layer was higher than the core refractive index, but by making
the charge trapping layer thin (~ 0.3um), the light is still guided in the
core (see fig. 5.1).

Top electrode

SiO,

Charge trapping layer
Buffer

Core layer

TOX

S1 wafer

Figure 5.1: Sample with a charge trapping layer. The charge trapping (0.3um) layer
is separated from the core by a buffer (0.6um). The figure is not to scale.

The distance was optimized to ensure the largest effect from the trapped
charges, as the part of the optical mode, that is below the charge trapping
layer sees the electric field F, while the part above the layer sees the
field —F as shown in fig. (5.1). Because the charges are trapped close
to the guided mode, part of the mode will be affected by an opposite
electric field. The effective second-order non-linearity is therefore the

!The author made the simulations of the waveguiding structure. The samples where
fabricated together with the coworkers Carl-Johan Marckmann and Yetao Ren. The
measurements made with the old MZI setup where made by Yetao Ren and the mea-
surements with the Bragg grating method was made together with Carl-Johan Marck-
mann
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large contribution from the optical field underneath the charge trapping
layer minus the contribution from the optical mode above the charge
trapping layer.

The size of the field depends on the poling conditions, but assuming

it is possible to trap a fixed amount of charge per unit volume of the
charge trapping layer, the thickness of the buffer layer can be optimized.
It was found that a distance of 0.6um was optimal. The waveguides
were made by normal UV-writing and then characterized using both the
old MZI method?, and the Bragg grating method [6]. It was found that
the charge trapping layer could increase the yield of the poling field by
~ 20% and a v value of 0.093 £+ 0.001pm/V corresponding to ch)f =
0.230 £ 0.003pm/V was obtained. The switching voltage possible with
the obtained non-linearity is ~ 820V, and the X((L?{,) value in the samples
was ~ 3.5 * 10722m?/V2. The optimal poling conditions was determined
by systematic adjustments of the poling temperature [6] and the result is
shown in fig. (5.2).
Even though the charge trapping layer does increase the frozen-in field
(Efrozen—in) it is limited by the small third-order non-linearity (X((l?;j)) of
glass. In the theoretical case where the frozen-in field is equal to the
breakdown field of glass (850V/um) the switching voltage would still be
~ 160V (obtained from eq. 5.2), which is unacceptably high.

5.4 The apparently large non-linear effect.

5.4.1 The original promise of silica poling.

The third-order non-linearity in the samples containing a charge trap-
ping layer is higher than for pure silica due to the Germanium dop-
ing of the core. The doping makes the core UV-sensitive and also in-
creases (X,(I%,)) from the literature value [7] for silica of 1.9 * 10~ %2m?/V2
to ~ 3.5+ 10722m?2 /V2. The non-linearity is still approximately a factor
of 2 too low for making an interesting switch (see eq. 5.2), even when the
poling field equals the breakdown field. As such a high poling field is only
possible in theory, the real factor is more like 4-8. This factor is needed

2The measurement methods applied are not accurate, as noted in section (3.7). The
old measurement methods are however reliable enough to determine that the possible
switching voltage is to high to be interesting.
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Figure 5.2: Obtained electro-optic coefficient (t) for different poling temperatures [6]
for a sample with and without a charge trapping layer.

to reach the interesting regime, where there might be applications for a
switch. This could also be interpreted as a need for a factor of 10 and
the normal reaction to such a need is to change something dramatically,
e.g. like changing the type of glass used for the waveguide. This aim of
this project was however to realize a switch in silica. The project aim
can be understood by forgetting silica’s low non-linear coefficient for a
moment. Then it makes sense to make a switch in silica due to the good
properties of silica such as a low optical propagation loss, a very high
breakdown field and ease of fabrication. The prospect of a glass based
modulator with the same switching voltage as LiNbOs is huge, as glass is
much cheaper and can moreover be integrated with silicon. A glass based
modulator would open for fast optical chip to chip interconnects and the
market could therefore become enormous. The only question remaining is
how the low non-linear coefficient of silica could be forgotten. To under-
stand this, one must look at the results published in the literature during
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the nineties (1990-2000). Very large effective second-order non-linearities
almost comparable to LiNbO3 was reported in for example [1,2], but as
reported by [8] the induced non-linear effect normally decayed rapidly.

5.4.2 Sample 3.5_1.

A possible explanation for the very large but decaying effective second-
order non-linearities was found [9], when measurements where made on
sample 3_5_1%. Measurements were performed on this sample and also on
a reference sample 17 1. The two samples are distinguished from each
other by the glass used as topcladding. The topcladding used for sample
3.5_1 is hard glass (see fig. 5.3), while it was soft glass (see fig. 5.4) for
sample 17_1. There are cracks in the hard topcladding, while the soft
topcladding is free of cracks (see fig. 5.3 and fig. 5.4).

34m EHT = 3.00 kv Signal A = InLehs  Date ;25 Mar 2002
Mag= 1184 KX |—| wD= amm Phabo No. = B39 Time :14:35

Figure 5.3: SEM picture of sample 3_5_1. Cracks are clearly visible.

3The sample fabrication and measurements where made by Carl-Johan Marckmann
and the present author was only involved in the data intepretation process
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Figure 5.4: SEM picture of sample 17_1. Cracks are not observed. A 4um waveguide
was used for the measurements.

As the electric field used to measure Aprq99 and hence the non-linearity is
stronger than the breakdown field in air (= 3V/um) [3], the airholes/cracks
in sample 3_5_1 will act as short circuits. An applied voltage will there-
fore only drop over the part of the sample below the cracks, which means
the electric field strength over the core is stronger than expected. The
curvature of the parabola describing Aprqq4 as function of applied voltage
will therefore be larger for the sample with cracks compared to the sample
without cracks even though the core glasses are similar. The larger cur-
vature of the parable due to cracks will naively be interpreted as a larger
X((:g)) value, as X((l?;,) is a measure for the curvature of the index parable (see
table 5.1).

Moreover it is possible to pole the sample with cracks at room tem-
perature, most likely because charges are accelerated through the cracks
when voltage is applied (see fig. 5.5). A similar effect is not observed for
sample 17_1 (see fig. 5.6) without cracks in the topcladding.

Thermal poling of sample 1 at 357°C for 20 minutes at -2.5kV yields a lin-
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Figure 5.5: Sample 3_5_1, TE polarization, measured from 0 to -1.5kV and from -1.5
to 0.5kV. An internal field Ejn¢ of 21.4 + 3.3V/um is built into the glass during the
first sweep. Ejn: is calculated assuming the effective electrode distance is 14.5V/um,
for other distances see table (5.1).

ear electro-optic coeflicient (t = 2ch)f /n4> between 0.02 and 0.05pm/V

measured right after poling using the old MZI method. One day after
poling, t has decreased with between 60% and 80% of the initially in-
duced value and one week after poling, t was measured to zero within the
measurement error.

The effective electrode distance is reduced because of the cracks. If
this is not taken into account when XS,?) is calculated from eq. (C.2), a
very high nonlinearity is obtained. To show that cracks can explain the
measurement for sample 3.5_1, X,(fq’,) is calculated assuming four different
effective electrode distances (see table 5.1).

Three of the four distances are chosen according to distances marked on
the SEM picture of the sample (see fig. 5.3). The last distance (7.8um)
illustrates how big the effective electrode distance is, if the material con-

3) .

stant xq, is exactly the same for sample 17_1 and for the sample in [4].
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Figure 5.6: Sample 17_1, TE polarization, measured from 0 to -2.5kV and from -2.5
to 1.0kV. No internal field is built into the sample during the two sweeps. —

The value of X&i’) calculated for different effective electrode distances
3.5.1 3521 3521 3.5.1 171
(14.5um) (9.-5um) (7.8um) (5.3um)
X (1072m)  9.22+£0.28 3.96+0.18 2.67+0.08 1.23+0.04 2.46+0.16
Efmzen_m(ulm) 44.0+1.7 672+26 79.8+3.1 1204+46 9.8+3.9

Table 5.1: The measured values of Xéi’} and Efrozen—in for sample 3_5_1 (assuming
different effective electrode distances) and for sample 17_1.

The same recipe was used to make the core glass for these two samples
and the X,(l?q’,) values should therefore be similar.

The instability of the poling induced internal field can also be a result
of the cracks, since charges trapped at the interfaces can escape through
the cracks. The lifetime of the poling at 357°C might very well exceed the
lifetime of the room temperature poling since the charges can be trapped

temporarily at the ends of the cracks.
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In [8] both a high nonlinearity and a short lifetime of E;,; have been
measured. Under the assumption of cracks all the way from the electrodes
to the core in [8], the naive corrected t value is reduced from 0.4 to
0.15pm/ V.

5.4.3 Conclusion for the apparently large non-linear
effect.

Cracks in the investigated glass can explain many of the observed phe-
nomenas for the samples with a high induced second-order non-linearity
like the decay of the non-linearity and the possibility of room poling. The
downside to this conclusion is that one should not expect manufacturing
reproducibility of silica samples with a high second-order non-linearity.
Moreover the very high X,Si’:) value observed is only due to an effective
shorter electrode-electrode distance, which is not usable in an actual de-

vice.

5.5 Changing XE{?,)

5.5.1 Doping the core.

With the understanding from section (5.4.2) for the previously reported
[1, 2] high effective second-order non-linearities, and with the need for
reducing the switching voltage from ~ 820V to below 100V (see discussion
in section 5.3), the only possible solution is to increase x((l?z’,) This is only
possibly by changing the waveguiding material or possible by changing
the waveguiding method. In the PECVD chamber glass can be doped
with several elements, like Germanium, Nitrogen, Boron and Prosporus.

Glass can be doped with Germanium and it raises the non-linearity of
the glass [10]. Glass with a high Germanium content does however flow
at room temperature as it reacts with water vapor from the air. I.e. even
though X((l?{,) can be increased by Germanium doping, Xz(z?z’z) is still limited
to an uninterestingly low level. Glass doped with Boron and Phosphorus
was used as topcladding for samples in previous work done within the

(3)

group [5]. These samples did not show an increase in xgy -
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5.5.2 Nitrogen doping.

The last possible dopant in the available PECVD chamber was nitrogen®.
It was hence tried to change the material X((li) by producing samples with a
core layer of Ge:SiON with different nitrogen doping levels®. The amount
of nitrogen in the core can be increased by increasing the relative con-
centration of NH3(g) in the PECVD reaction (see reaction eq. 4.3). The
flowrate of N H3(g) was varied from 0 sccm (standard cubic centimeters)
to 250 sccm. Due to the complexity of the PECVD reaction, the nitrogen
concentration in the deposited glass is not necessarily linear with the flow
rate N Hs(g). An indirect way of determining the nitrogen concentration
in the deposited core glass is to measure the index of the deposited glass.
The index is shown in fig. (5.7). As the index increases linearly with the
N Hj(g) flow, it is assumed that the incorporated nitrogen also increases
linearly with N H3(g) flow.
The aim with the nitrogen doped samples was to investigate the change
in X,S?;) and the samples where therefore made with a soft topcladding to
avoid cracks like in fig. (5.3). Due to the soft top cladding, poling of the
produced samples was not performed, as previous work in the group [5]
had demonstrated that poling of samples with soft topcladding does not
incorporate a significant electric field. The DC-shifted MZI method was
used to measure XE{:’,) for the 4 different samples and the result is shown in
fig. (5.8). To make a fair comparison between the samples, the width of
the waveguides was chosen different for the four samples to get the same
confinement factor (~ 0.75) to the core material.
When the oxygen in Si0s is substituted with nitrogen, the glass will at
some point make a spatial transition, as the ratio of silicon to oxygen is 1:2
in silica and the ratio of silicon to nitrogen is 3:4 in nitride glass (SigN4).
The spatial transition changes the local lattice around each silicon atom.
The turn in the curve in fig. (5.8) could be caused by a transition which
indicates that nitride glass could have a high x®) value.

It is not easy to make a recipe for nitride glass and a RIE etching
procedure, but luckily another group at COM investigated nitride glass.

“The nitrogen doped samples where made and characterized together with Carl-
Johan Marckmann

5At the time where the samples were made, the Bragg grating method was still
used for characterization. The samples therefore had to be UV-sensitive and they were
hence co-doped with Germanium.
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Figure 5.7: The refractive index of samples doped with nitrogen. As the refractive
index is linear with the flow rate N Hjs(g), the nitrogen is properly also linear with the
flow rate.

A silicon rich® nitride (SRN) sample was kindly provided by Karin An-
dersen [11] and X,(ﬁ,) was measured (see fig. 5.9 and table 5.2). The core
size was 0.6 x 0.6um as this core size made the waveguide single mode.
The confinement factor to the core is 0.6 witch is a little lower than for
the nitrogen samples.

The third-order non-linearity ng,) found in SRN is a factor of 9 larger
than for silica. If the sample could be poled to reach a frozen-in field of
200V/pm, the switching voltage for a dual electrode (see eq. 5.1) MZI
would be 188V, where the bulk index of 2.06 has been used for the SRN
material. The high index step between the core and the cladding gives
a very small mode size and hence could the electrode-electrode distance
probably be reduced to 5um without a significant increase in the optical
loss. This would reduce the switching voltage to 78V. However, this

5Silicon rich nitride is nitride glass with more silicon than the 3:4 ratio for pure ni-
tride (S73N4). A comprehensive description of SRN glass fabrication and investigation
can be found in [11].
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Figure 5.8: Measured X((,SL) values for samples with different nitrogen contains in
the core glass measured for TE polarized light. The blue error bars marks the relative
uncertainties, while the red error bars marks the total uncertainty including systematic
errors. Uncertainties are discussed in appendix B. The confinement factor to the core
was for all the samples was around 0.75.

) for SRN.

Measurement X(3) Efrozen—in
10~22m?2 V2 V/pm
TE 10.62 +£0.48  4.92 + 0.28
™ 1737+ 0.78 —3.83 £ 0.46

Table 5.2: The Xﬁ) values measured with the DC-shifted MZI setup for a silicon rich
nitride (SRN) sample made by Karin Andersen [11]. The confinement factor to the
core was ~ 0.6. The uncertainties includes all contributions (see appendix B).

switching voltage was judged to high to be of interest, and mo poling
attempts were therefore made on SRN waveguides.
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Figure 5.9: Measurement of the second-order non-linearity ch)f vs. external applied

field (Eez¢) for silicon rich nitride (SRN) samples. The confinement factor to the core
was ~ 0.6. The non-linearity was measured using the DC-shifted MZI method. The
samples were fabricate by Karin Andersen. The uncertainty is only the root mean
square obtained by the fitting procedure.

5.5.3 Direct UV-writing.

After having investigated nitrogen doping, attention was paid to direct
UV-writing. As described in chapter (4), the horizontal index step can
be made by direct UV-writing of the waveguide. During the UV-writing,
the sample is exposed to a focus laser beam with a FWHM of 2.5um.
The conditions during exposure is rather extreme in the sense of local
temperature and this does introduce a permanent index increase in the
material. The exposure could possibly also change the material x(3) value
and measurements where made on a sample containing a charge trapping
layer (see section 5.3). There was, however, not measured any difference
in the obtained %) value.

5.5.4 Ion Implantation.

After having tried to dope the core with nitrogen there were no other
easy dopants available. One method for trying other dopands is ion im-
plantation, where the core glass should be bombarded with the ion in
investigation. The challenges with this approach were twofold. Ion im-
plantation is too expensive for mass production and if an interesting ion
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was found, other ways for incorporating the ion into the glass should have
been found. The other challenge was the lack of ion implantation equip-
ment at DTU perimeters and in the end the idea was not pursued due to
the lack of equipment.

5.6 Changing the waveguiding method.

5.6.1 The concept.

To increase the material non-linearity without changing material might
seem like a contradiction in terms, but an attempt was never the less
made. All the samples investigated so far were based on the principle
of total internal reflection, where light is guided in a high index core
surrounded by a lower index cladding. This is not the only way to guide
light. There are two other methods known to the author. The first
possibility is to guide light as a surface wave at the interface between a
metal and a dielectrica (see section 5.6.2). The second possibility is to
guide light by surrounding a waveguide with a micro-structured cladding
in which the structure forbids propagation of certain wavelength intervals.
This kind of guidance is known as photonic bandgap guidance and such
samples are investigated in chapter (6).

5.6.2 Long-Range Surface Plasmon Polaritons.

Light can be guided as a surface wave in the boundary between a metal
an a dielectric. When a thin metal strip is placed inside a dielectrica,
light can be guided as two coupled surface modes with a reasonable low
optical loss ~ 2dB/cm [12]. Fig. (5.10) shows the mode guided by a thin
metal strip.

There are two differences between light guided by normal index difference
and light guided by a metal strip. The mode profile of light guided by
a metal strip is exponential all the way into the metal [12], while light
guided in a conventional waveguide to a good approximation is Gaussian
in the core region. The other difference is the light propagating in the
metal. Due to these two differences, a Long-Range surface plasmon po-
lariton (LRSPP) waveguide was kindly provided by MMP A/S for in-

vestigation of the third-order non-linearity x'. The DC-shifted MZI
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Figure 5.10: Light can be guided as Short-Range (SRSPP) or Long-Range Surface
Plasmon Polaritons (LRSPP) in the interface between a metal and a dielectric. The
SRSPP has high intensity inside the metal and will hence be attenuated by the large
absorption in the metal. For LRSPP the intensity of light inside the metal is almost
zero, and the attenuation is acceptable. The figure is made by Alexandra Boltasseva.

measurement results are shown in fig. (5.11) and the results are listed in
table (5.3).

Even though the determined x(%) value is large (60.642.7) * 10~22m?/V?2,
it is not surprisingly large as the cladding material used by MMP is a
polymer and polymers are known to exhibit large x(® values. I.e. the
increased effect is properly due to a change in material not to a change
in waveguiding method. As poling of polymers is not as straightforward
as glass poling due to the lower breakdown field in polymers, the ap-
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Figure 5.11: Measurement of the second-order non-linearity xgj,)f vs. external applied

field (Eez¢) for a Long-Range Surface Plasmon Polariton guided by a thin (10nm) gold
strip. The sample was kindly provided by the company MMP A/S. The uncertainty is
only the root mean square (RMS) obtained by the fitting procedure.

) for LRSPP.

Measurement x® Efroren—in
107 2m?)v? V/um
TE 60.6 + 2.7 1.23 +0.39

Table 5.3: The Xé‘? values measured with the DC-shifted MZI setup for a Long-Range
Surface Plasmon Polariton guided by a thin (10nm) gold strip. The sample was kindly
provided by the company MMP A/S. The uncertainties includes all contributions (see
appendix B).

proach with LRSPP was discarded. An influencing factor for stopping
the LRSPP investigation was the guided mode size. The mode size of
the Long-Range Surface Plasmon Polariton is equivalent to the mode in
a standard fiber, and the electrode-electrode distance must therefore be
large (~ 15um) to avoid a significant propagation loss. The increase in
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x®) value should therefore be weighted against the increase in sample
thickness.

5.7 Conclusion.

In this chapter all results concerning third-order non-linearities have been
presented. The discussion of the obtained results demonstrated that: The
third-order non-linearity of silica is a factor of 10 too small to be of any
interest for making a poling based MZI switch on a 4 inch wafer. The
interest in poling originated from very large ch)f values being reported
in the nineties [1,2]. A possible explanation for the large results reported
has been proposed (see section 5.5.2 about cracks) and hence there are
no mysteries left in poling of silica that can justify further research with
the goal of making an electro-optic integrated switch in silica.

A method for realizing a poling based MZI switch in silica is to apply
a poled fiber [13] where the electrode length can be significantly longer.
The switching voltage is still high (~ 220V") [14].

Higher X,(l?;,) values can be obtained by changing the core glass and
it has been shown that a switching voltage of ~ 80V is within reach
presuming that silicon rich nitride and silica behave similarly during pol-
ing. Fven the obtained increase in X,(l?,’,) by a factor of 5 was judged to be
insufficient for realizing an interesting switch on a 4 inch wafer.
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Chapter 6

The photonic crystal
samples.

6.1 Introduction.

The last waveguiding principle investigated! during this Ph.D. project
was 2D photonic bandgap guidance [1]. The basic concept of bandgap
guidance is to make a micro-structured material in which light in certain
wavelength intervals cannot propagate. This is obtained by etching small
holes in a periodic manor in a high index material like silicon. By design-
ing the structure properly, the periodic changes in the refractive index
between the silicon and the holes will prohibit propagation of the desired
wavelength interval (an example of such structure is shown in fig. 6.1).
To guide light in such a structure, a defect in the periodic structure is
introduced by removing a line of holes (see fig. 6.1). The resulting solid
silicon line then acts as a waveguide, as light incident into the line de-
fect cannot propagate into the surrounding structure and hence is guided.
The theoretical transmission diagram for a photonic bandgab structure
is shown in fig. (6.2).

It is known from the literature [2], that the effect of a material non-
linearity should be enhanced linearly with the group index (see eq. 2.11)
and very high group indexes have been reported [3] for light guided in

!The author does not know of any other waveguiding methods, that has been real-
ized for integrated devices.

107
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a photonic crystal (PhC) waveguide?. The investigation of PhC samples
started with the hope of enhancing the effect of a material third-order
non-linearity in the glass surrounding the 2D PhC structure (see fig. 6.4).

SEM image of PhC
waveguide

3D drawing of PhC waveguide.

1

Figure 6.1: The left figure is of drawing of a PhC silicon structure supported by a
silica layer. The light is guided to the PhC part by a ridge waveguide. The figure is
not to scale. The right SEM image is of an etched structure in silicon.

6.2 Expected a x® and found a y®?.

6.2.1 Preparing sample for x® investigation.

The PhC waveguide samples were kindly supplied by Lars Frandsen and
coworkers. The PhC waveguides were all designed for TE polarized light
and hence only TE polarized light was investigated. All experimental and
theoretical plots are made for TE polarized light. In the experiments the
polarization was changed until a clear bandgap was observed. The first
sample r2¢5 had its original cut-off at 1610nm (see transmission spec-
trum in fig. 6.3). To move the cut-off down in wavelength, the sample
was oxidized by backing it at 1050°C in a dry oxygen atmosphere. The
cut-off was moved down to 1528nm after oxidation. A ~ 2um hard SiO»

2Micro-structured materials are in general called photonic crystals, and photonic
bandgap structures is a subset of PhC'’s.
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Figure 6.2: The left graph shows the bandgab diagram for the studied photonic crystal
(PhC) waveguide determined by calculations using the software package MBP [4]. The
gray areas represents a continuum of cladding modes and the two red lines indicate
the bandgab, where no modes are allowed in the cladding. The two black lines are
dispersion curves for the photonic bandgab modes guided in the silicon defect line. The
green line shows the cut-off for transmission through the PhC waveguide. The MPB
calculation results where kindly provided by Lars Frandsen. The right graph shows
the transmission through the PhC waveguide determined by 2D finite-difference-time-
domain (FDTD) calculations. The transmission is high in the bandgab region where
the mode is present. The 2D FDTD calculations results where kindly provided by
Andrei Lavrinenko.

topcladding was then deposited in the PECVD to confine the guided light
inside the sample. After the glass was deposited, the cut-off had moved
up to 1545nm (see fig. 6.3).

An electrode was painted on top of the sample, and the non-linearity
was measured using the DC-shifted MZI setup. It was expected that the
sample would have a x(3) value due to the tail of the mode propagating
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Figure 6.3: Transmission spectrum for the virgin sample r2c¢5 and for the sample
after oxidation and after PECVD deposition of the topcladding. The measurement
were made for a 20um long PhC waveguide. The cut-off was 1610nm for the virgin
sample and 1545nm after oxidation and growth of topcladding.

in the glass cladding surrounding the silicon layer (see fig. 6.4).
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Electrical signal

Optical field in top
and bottom glass
cladding.

~a

Figure 6.4: The drawing illustrates the PhC sample after it has been processed to
measure x> by oxidation followed by growth of hard PECVD topcladding. There
is applied an electrode on top of the PhC waveguide. In reality the electrode does
also cover part of the buried waveguide. The original idea with the measurement was
to measure the X(S) non-linearity due to light in the top and bottom glass claddings.
When measurements where made, it was a surprise to observe, that the contribution
from x® was not detectable compared to a discovered pure x(? non-linearity.
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6.2.2 Puzzling observations.

When measuring the non-linearity with the DC-shifted MZI method sev-
eral observations where puzzling. The observations are listed below. The
original experiments where made at an AC-frequency of 33.333kHz and
with the top electrode covering both the PhC waveguide and also a cou-
ple of millimeters of the buried waveguides leading light to and from the
PhC waveguide.

e A significant x@ value was found but no detectable x(3) value was
observed.

e The electrical phases #; and 63 were wavelength dependent (see
section 3.5 for a description of the phases 6; and 63).

e The measured X(z) value depended on the applied AC-voltage.
e The electrical phases 61 and 83 depended on applied AC-voltage.
e @ oscillated strongly with the wavelength.

It was determined that the measured x(?) was not due to x(*) combined
with a frozen-in electric field (Efpozen—in) by measuring x?) vs. applied
external field (Eqg). The measured x(® value was independent of the
applied DC-field, as shown in fig. (6.5).

When changing wavelength, the electrical phases #; and 03 had to be
changed. These phases should only depend on the electrical equipment
and they should be totally independent of the optical signal, i.e. both of
optical power and optical wavelength. This was not the case for the first
measurements at 33.333kHz as shown in fig. (6.5). This could indicate
that the measured x(?) effect consisted of multiple contributions, and that
the weight between the contributions varies with wavelength.

The measured x? value did not depend on the applied DC-field (see fig.
6.1), but it depended on the applied AC-field (see fig. 6.6). I.e. the phase
change induced was not linear with the applied AC-field. The electrical
angles 01 and 65 also depended on the applied field, as shown in fig. (6.6).

The last unexpected observation, was large oscillations in the measured
x? value vs. wavelength. A monotone variation was expected, when the
wavelength was tuned towards the cut-off frequency due to an increase
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Figure 6.5: The left graph shows the measured x® value for different external applied
fields. There is not observed any change in x? beyond measurement uncertainty when
a DC-field is applied. This corresponds to a pure x‘? effect, not a x® effect. The
right graph shows the change in the angle 6; vs. the wavelength of the incident light.
The angle should not change but for the original 33.333kHz measurement 6; showed a
significant wavelength dependence. Later the frequency was changed first to 100kH z
and then to 200kH z. There could still be a wavelength dependence for 6, at 100 kHz,
but for 200kH z the dependence is not observed.

in the group velocity, but not the oscillating behavior shown in fig. (6.7).
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Figure 6.6: The left graph shows the measured x( vs. strength of the 33.333kHz AC-
field. The measured effect should be constant, like the measured effect for the buried
waveguide. For the PhC waveguide x*) was however observed to depend on the AC-
field. The right graph shows the electrical angle ; vs. AC-field. 61 can depend on
the AC-field due to phase delay from the AC-amplifier, but 6; should behave identical
for a buried waveguide and for a waveguide with a PhC segment, which is clearly not
observed here.
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Figure 6.7: The measured x? value for 25um and for 30pm PhC waveguide. The
oscillations are much larger than what is explainable by the noise of ~ 4% (see appendix

Q).
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6.2.3 Clearing out in the puzzling observations.

To explain the observed behavior, the difference between the sample with
the PhC waveguide and the normal glass samples presented in chapter (5)
with a x(®) non-linearity was investigated. One obvious difference was the
semiconductor layer in which the PhC structure is etched. The normal
glass samples consisted of electric isolating layers and hence there was no
electron movement possible inside the sample. In contrast, it is possible
to move charges in the horizontal direction inside the silicon layer (see fig.
6.8). It was determined® that the cut-off frequency for moving electrons
in the silicon layer was ~ 100k H z.

Electrical signal

el nt

<5
Lisey
Eteay
L=y

< 15 . D Ke(
% Q2

=S [

| e FIS

1 Ground

Figure 6.8: Drawing of a PhC waveguide, where electrons are being moved from the
surrounding silica to a position underneath the electrode (Eeq: > 0). Movement in
the horizontal direction is caused by top electrode shape, that only covers part of the
silicon structure. Due to resistance in the silicon, this electron movement will cut-off
for frequencies faster than 100 kHz [5].

It was confirmed experimentally, that changing the AC-frequency to 200k H z
removed some of the weird behaviors observed at first. It was also discov-
ered that the buried waveguide contributed significantly to the first x(?)
measurements performed. The only weird behaviors left when measuring
at 200k H z with a short electrode (see fig. 6.9) was

e The significant x(?) value found.

30le Hansen at MIC (DTU) made a theoretical investigation on the movement
of charges inside the silicon layer and determined that the cut-off frequency was ~
100k H z.
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o @ oscillates strongly with the wavelength.

After having increased the frequency to 200k H z, refined measurements
where made on sample r2¢5. The result is shown in fig. (6.9). It was
expected that the X((:%Z'e value? should be enhanced with the group index,
but the group index was expected to increase in a monotonous manner
when the wavelength approached the cut-off frequency. To determine the
group index, a method based on the time of flight (ToF) principle was
developed as described in section (6.3).

Sample r2c5

700

—— 20 um PhC waveguide

600 — » — Repeated measurement
300
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—_ 250
2 4004 200
g_ Zoom-in
~w 300- 150
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=

100
2004 1542.5 1543.0 1543.5 1544.0 1544.5
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Figure 6.9: The left graph shows the measured x&?,)m value for a 20um PhC waveguide
at 200kHz. The oscillations are much larger than explainable by the noise of ~ 4%
(see appendix C). The right image shows the top electrode used for the measurements.
The width of the hand painted electrode is around 150um for the investigated 20um
waveguide.

4To determine the XE?,)TE value from the measured ch)f value, the confinement factor
to the silicon was determined by calculation. The results can be found in appendix E.
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6.3 Group index measurements.

6.3.1 Group index and enhancement of the non-linear
effect.

The group index (ng s s) of light guided in photonic crystal (PhC) waveguides
can reach much higher values [6] than observed in ordinary index guiding
waveguides. Values up to ngfy = 1000 have been reported [3]. The effect

of a material non-linearity is enhanced linearly with the high group index
according to eq. (2.11). This has been derived theoretically [2], but until
now experimental results have shown an enhancement effect [7] but the
simple linear correlation have not been demonstrated. To show that the
change in non-linearity measured for the PhC waveguides investigated is
due to a change in the group index, a method for measuring Ang .7r(A)
for the PhC waveguides is developed.

Experimental method.

The basic concept of measuring Ang . r(A) using the time of flight (ToF)
principle, is to measure the phase delay of a transmitted signal vs. wave-
length. The transmitted signal is an envelope function for the amplitude
of the light and the phase velocity of the signal is hence identical to the
group index of the light. In the experiments, amplitude modulated light
is sent through the PhC waveguide and the phase of the transmitted sig-
nal is recorded vs. wavelength. The phase of the modulation function is
then used to calculate the group index of the light.

6.3.2 Experimental setup.

The phase of the envelope function is measured using a network analyzer,
that both modulates the light and detects it after the PhC waveguide.
This is sketched in fig. (6.10).

To measure Angrr(A) for a PhC waveguide, cw light with intensity (I)
emitted from a laser is amplitude modulated by a LiNbO3 MZI based
modulator. The modulator changes the output amplitude due to an elec-
trical sinus signal (Vmp sin(wt)) with amplitude (Vgmp) generated by the
network analyzer. The intensity oscillation (I,s.) after the modulator is
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Figure 6.10: Continuous waves (cw) laser light is small signal modulated and then
transmitted through the PhC waveguide. The phase of the modulation is measured by
the network analyzer after detection at the photo diode. The computer controls the
laser wavelength and records the phase detected by the network analyzer.

(see eq. 3.14).
Iosc = Isin (CLiNbO?:V;zmp sin(wt)) s (61)

where cr;npo3 is the linear factor between the voltage applied to the
LiNbO3 modulator and the phase change for the light. The equation is
greatly simplified when compared to the output of a fiber based modulator
(see eq. 3.14), as the difference in optical path length between the two
arms in the MZI always® is A/2. The modulation of the light affects
the lights spectrum, as power is transferred to sidebands as illustrated
in fig. (6.11). The sidebands are only detectable in the spectrum, when
the amplitude of the modulation is large. The signal is always carried
in the sidebands, and the spectral width of the probe pulse is therefore
approximately 0.4nm also for the small amplitude modulations used in
the actual experiment.

The amplitude V,y,, of the applied electrical signal is small, and the
intensity oscillation (eq. 6.1) therefore simplifies to

IOSC = ICLiNbogvampSin(wt). (62)

The oscillating wave is transmitted through the sample and detected by
the photo detector. The phase of the received signal is then measured
by the network analyzer. The obtained phase for TE polarized light sent
through a 20pum symmetric W1 PhC waveguide® is shown in fig. (6.12).

5Tt is due to the integration of the interferometer on a chip, that it is possible to
have a constant phase difference between the two arms.

A symmetric W1 PhC waveguide is a photonic crystal, where the waveguide is made
by removing a single row of holes. The SEM picture in fig. (6.1) is of a symmetric W1
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Figure 6.11: The spectrum of the laser modulated by large 20GHz amplitude os-
cillations. The modulation gives sidebands at A &+ 20GHz and the spectral width is
therefore 0.4nm. The sidebands are much smaller (actually not detectable using an
optical spectrum analyzer) for the small amplitude modulation applied in the experi-
ments. The position of the sidebands is independent of the modulation amplitude and
the probes spectral width is therefore 0.4nm.

6.3.3 Polarization control.

To ensure the right polarization of the light in the PhC waveguide, an-
other laser is used to transmit light into the twister before the polarizer
and the signal after the sample is detected by an optical spectrum ana-
lyzer (see fig. 6.13).

The twister just before the sample is adjusted until the desired polariza-
tion is obtained, while the twister in front of the polarizer is adjusted to
get maximum transmission. It is ensured that the desired polarization
is obtained by investigating the transmission spectrum, as the spectral
transmission features of PhC waveguides are very different for TE and
TM polarized light. When the setup with the network analyzer is recon-
nected like fig. (6.10), the polarization of the light reaching the sample is
not changed because of the polarizer. The twister in front of the polarizer

waveguide.



“main” — 2006/6/28 — 1|6:15 — page 121 — #137

6.3 Group index measurements.

121

Phase (degree)
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Figure 6.13: The desired polarization is obtained by measuring the transmission
spectrum through the sample. After the desired polarization is obtained by adjusting
the twister in front of the sample, the setup in fig. (6.10) is reconnected.

is again adjusted for maximal transmission.
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6.3.4 Calculating the group index.

To obtain the group index from the measured phase, the points in fig.
(6.12) must first be adjusted, as the result of a phase measurement is a
number between —180° and 180°, i.e. the phase is measured modulos
360°. As the phase is a continuous function, the recorded discontinuous
of 360° are removed, as demonstrated in fig. (6.14).

Direct phase measurement Points adjusted

1400
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1204 1200
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-180
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Figure 6.14: The left graph shows measured points for phase vs. A for a buried
waveguide. The large dispersion of the phase is due to the applied fiber amplifiers.
The measurement is adjusted by adding 360°k to the points, where k is an integer.
The integer is chosen such that the resulting line has no discontinuities. The result of
the adjustment is shown in the right graph.

To find the phase change due to the PhC waveguide, a similar phase mea-
surement like the one shown in fig. (6.12) is made on another waveguide
on the sample. This new waveguide is similar to the waveguide containing
the 20um PhC, except that it does not contain a PhC part. The mea-
sured points are adjusted according to fig. (6.14) and then fitted with a
3-order polynomial as shown in fig. (6.15).

The polynomial from fig. (6.15) describing the phase change in the buried
waveguide is subtracted from the phase points measured for the 20um
symmetric W1 PhC waveguide. The result is the phase change originat-
ing from the difference between the waveguide with the PhC part and the
waveguide without a PhC part. This phase is plotted in fig. (6.16).
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Figure 6.15: The phase measured for a buried waveguide. The points are fitted with
a 3-order polynomial (the cyan line) and this fitted curve is used to calibrate the points
measured for the 20um PhC waveguide. The transmission spectrum (red curve) is for
the 19GHz envelop function signal. The green points are not used when determining
the polynomial, due to the low transmission of the 19 GHz signal. The transmission
spectrum of the 19 GHz function is due to the carracteristics of the applied fiber

amplifiers.
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Figure 6.16: The phase change corrected for 360° discontinuities (see fig. 6.14)
and calibrated to obtain only the PhC waveguide phase change by subtracting the
polynomial from fig. (6.15)
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To determine the group index (ngeys) from the phase delay (Pesectric)
of the PhC waveguide, it is noted that the phase is changed by 360° when
the path length for the signal is increased by a wavelength (Agjectric)-
That is

A¢elec7§7‘ic = 360° <~ Ang,efflPhC = )\elect'rim (6'3)

where [ppc is the length of the PhC waveguide. Here it was used that the
group index of the light equals the phase index of the envelope function
(the electric function). As the phase shift is linear with Ang .ry, eq. (6.3)
transforms into

. A¢electricc
7
360° lPthelectric

Angepf = (6.4)
where ¢ is the vacuum speed of light and fejectric 18 the frequency of the
electrical modulation function. The negative sign is chosen because a
larger phase delay (negative Adejectric) iS equivalent to a larger group
index. The points in fig. (6.16) are used to calculate the group index of
the PhC waveguide using eq. (6.4). The result is plotted in fig. (6.17).
Part of the noise in fig. (6.17) is due to F-P oscillations in the waveguides
leading light to and from the PhC waveguide. These two waveguide acts
as F-P cavities. The optical path length for a F-P cavity is wavelength
dependent and this change in optical path length is not removed from fig.
(6.17). The F-P contribution can be removed by averaging over a F-P pe-
riod, as this average optical part length is constant. The two F-P periods
are determined to 0.14nm and 0.7nm from a cw transmission spectrum
(see fig. 6.18). As the curve for Ang s has interesting spectral features
smaller than 0.7nm, only the contribution from the physical long F-P
cavity (equivalent to the spectral width of 0.14nm) is removed by aver-
aging. To determine the group index instead of only the change in group
index, the experimental curve is compared with 2D finite-difference-time-
domain (FDTD) calculations made by Andrei Lavrinenko after the change
in group index was measured. The final curve for ng.rs()) is shown in
fig. (6.19).



“main” — 2006/6/28 — 16:15 — page 126 — #142

126 The photonic crystal samples.

—
o%
00— 0
[ =
=
250 S8
20
0 95}
200 N
s 5
gw 150 g
10
1004 o
15§
50 - ‘ R
' 20 é
0 Y ¢ 2
. . Los &
=
=

T T T T T T T T T T
1530 1535 1540 1545 1550 1555 1560
Wavelength (nm)

Figure 6.17: The determined group index for a 20pum symmetric W1 PhC waveguide.
The noise part in fig. (6.16) due to the low transmission after the cut-off wavelength
is partly omitted in this graph. As only the change in group index (Ang.ss(N)) is
measured, the left part of the curve is adjusted to oscillate around 0.
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Figure 6.18: High resolution scan for the transmission spectrum of the waveguide
containing a PhC part. The two periodic amplitude oscillations originate from each
of the waveguides leading the light to and from the PhC part. The short period (long
waveguide) is 0.14nm while the long period (short waveguide) is 0.7nm.
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Figure 6.19: ng ¢ for a 20pum symmetric W1 PhC waveguide, where the curve is
averaged over 0.14nm to remove the contribution from a physical long F-P cavity (see
fig. 6.18). The green curve is the group index determined by calculating ToF using the
2D finite-difference-time-domain (FDTD) metode [8]. The group index calculations
where made by Andrei Lavrinenko after the change in group index was measured.
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The measured group index (see fig. 6.19) does not increase uniformly
towards the bandgap. The measured oscillations were yet another sur-
prise and they are not seen in the 2D FDTD calculations. The group
velocity of the light is equal to the slope of the dispersion curve. The
form of the dispersion curve needed to give the measured group velocity
is drawn in fig. (6.20) together with a calculated dispersion curve made
with the MPB [4] software package by Lars Frandsen.
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Figure 6.20: A zoom-in of the dispersion diagram that shows the cut-off for the
guided mode. The points are 3D calculations made using MPB [4], kindly provided by
Lars Frandsen. The red curve is a schematic drawing that demonstrates the needed
behavior of the dispersion curve to assemble the measured group index behavior. The
transition between the two flat regions corresponds to the measured low group index
in between the two peaks on fig. (6.19).

The oscillating behavior is not observed in the 2D FDTD calculations
and not even in the 3D calculations made using MPB. As described in
appendix E, the calculations made with MPB does not correspond to the
expected when the dispersion curve crosses a cladding mode from the sil-
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ica surrounding the silicon PhC. This is probably due to the continuous
boundary conditions applied in MPB (see appendix E). In 3D FDTD
calculations Andrei Lavrinenko found a group index behavior similar to
the measured [9], as shown in fig. (6.21). The measured oscillations in the
group index are therefore not sample specific, but very advanced calcula-
tion methods like 3D FDTD are needed to see the group index oscillations
theoretically.
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Figure 6.21: ny ¢y for a 20pm symmetric W1 PhC waveguide, where the curve is
averaged over 0.14nm to remove the contribution from a physically long F-P cavity
(see fig. 6.18). The red curve is group index determined by calculations of ToF using
the 3D finite-difference-time-domain (FDTD) metode [9]. The group index calculation
was made by Andrei Lavrinenko after the change in group index was measured.
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2) . .
6.4 The Xgo)m in Ph.C. waveguides compared to
the group index.
The oscillations in the group index explains the oscillations in the mea-

sured non-linearity, which is clearly seen when the second-order non-
linearity” is plotted together with the group index (see fig. 6.22).
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Figure 6.22: ng.ff and Xﬁ?,e measured for a 20pum symmetric W1 PhC waveguide.

The ng,cf¢ curve is averaged over 0.14nm to remove the contribution from a physical

long F-P cavity (see fig 6.18). The behavior of the curves are identical for the whole

measurement range. This graph demonstrates for the first time experimentally, that
2) . . . . .

Xcore Scales linearly with the group index as predicted theoretically [2].

As the oscillations in the measured xﬁ?,le value are due to oscillations in
the group index, the only remaining weird observation is the non-zero

"It is strictly speaking not correct to call the measured effect X&?,le, as the material

Xﬁile is the measured effect divided by the group index. As discussed in section (2.3)
the measured size is still called ng,)re due to normal nomenclature.
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ngne value in silica. An experimental explanation for the ng«e value was

found when producing sample r2c4. After deposition of hard topcladding
there was only measured a negligible ng«e value (see fig. 6.23). There was
then deposited a layer of SigNy on top of the structure (see fig. 6.24).
The growth conditions were chosen according to [10] to obtain a high
stress in the Si3Ny layer. A significant non-linearity was measured after
applying the stressing layer, as shown in fig. (6.23).

| 1 | 1 |
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./l
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Figure 6.23: Xﬁiie measured for a 20um symmetric W1 PhC waveguide before and
after applying a stressing layer to the structure. The non-linearity is almost 0 before
the stress layer was deposited and it is significant afterwards. The optical field does
not penetrate into the stressing layer, and the affect of the layer is purely mechanical.
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Figure 6.24: The Si3 N4 would like to expand in the horizontal direction at all points,
but the rest of the structure prohibits a significant expansion. The Si3 N4 therefore
stresses the structure. The stress is transmitted through the top cladding, which cannot
expand in any significant degree. The experimental results from the buried waveguide
can be explained if the stress partially released by deformation of the holes in the PhC
waveguide.
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The original non-linearity in sample r2¢b was probably due to a stress
from the topcladding. When the topcladding for sample r2¢5 was grown,
a mass controller in the PECVD chamber for SiH4(g) was defect. The
result of the defect mass controller was a faster growth rate and hence
there was deposited 2um hard topcladding instead of only 1um, as was
intended. The difference in growth conditions would probably also induce
stress in the layer, as the normal recipe used, is developed to obtain a low
stress level. I.e. the discovery of a stress induced XS;?),G was made possible
by chance.

The mass controller was replaced before topcladding was grown on
sample 72c4 and the stress in the topcladding was therefore significantly
lower. The optical light is confined below the hard topcladding first ap-
plied and a significant non-linearity was first measured after applying the
stress. The origin of the non-linearity is therefore the stress and its effect
on the silicon. Thinking back, it is not totally surprising, that stressed
silicon has a non-zero x(?) value, as stress induced second harmonic gen-
eration (SHG) has been observed [11] in silicon.

6.5 Outlook for non-linear Silicon.

As discussed in section (2.3), there are numerous ways for reporting the
non-linear value obtained. In the material development process, x(2) is
the most interesting size. To evaluate if a device made of the developed
material is interesting the phase change induced per unit length is the size
of interest. I.e. the value for V x [ must be compared with the obtained
value for other known material. For LiNbOs3 the value of V, x[ is 10 —
12V xc¢m [12,13] for an actual device. In the devices, all parameters have
been optimized, and the desire for a short electrode-electrode distance
has been weighted against the optical loss due to optical leakage to the
electrodes. For sample r2¢4 the V; x [ value is plotted in fig. (6.25).

As the optical loss in PhC waveguides is quite high it will at this point
in the PhC development state not be interesting to make a MZI based
modulator that incorporates a PhC structure to enhance the non-linear
effect due to a high group index. The interesting value is therefore the
non-enhanced value V; * [ obtained in silicon. It has been shown, that
the enhancement is equal to the group index, and by assuming a group
index of 3 in a normal waveguide, it is found that
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Figure 6.25: The measured value of V; [ for sample r2c4 before and after growing
the Siz N4 stress layer. The voltage is low as a consequence of three parameter, the
short electrode-electrode distance of ~ 2.6um, the high group index of ~ 200 and as
the material non-linearity is ~ 130V * ¢cm. The short electrode-electrode distance does
not cause a measurable optical leaking loss to the wafer and to the top electrode due
to the high index step between silicon and silica. The electrode-electrode distance can
possibly even be reduced without an increase in the optical loss.

e V; %l ~ 130V % cm with a normal group index of 3.

The non-linearity was measured for TE polarized light. If stressed sili-
con is comparable to normal glass (an isotropic material) the x(?) effect
for TM polarized light should be 3 times higher (see appendix D). To
measure the non-linear value for TM polarized light, single mode samples
were fabricated using normal lithography techniques. The waveguide was
made single mode by making it 1um in width and only etching 30 nm
down in the silicon layer (the height was measured using an atomic force
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microscope), as shown in fig. (6.26). A hard topcladding was then grown
on top of the waveguide and finally a stressing layer was also added. The
measured x(?) value was negligible, even though a lem long waveguide
was underneath the top electrode. l.e. even though the length of the af-
fected waveguide was ~ 500 times longer than the 20um PhC waveguide
investigated.

Si,N,
S10,
Silicon

TOX

S1 wafer

Figure 6.26: A buried waveguide made by etching a 30nm step down in the silicon
layer. The with of the waveguide was 1um and it is single mode. There was not
detected any x(®) value in the samples fabricated. The possible explanation is that
the stress does not relax when transmitted through the solid core layer and hence is
symmetrically seen from the core layers perspective.

The difference between the buried waveguide and the PhC waveguide is
from a stress perspective the holes in the silicon layer. These holes prob-
ably contains air even after the topcladding has been deposited and the
silicon can therefore expand into the holes. This is not possible for the
fabricated buried structures. As a PhC waveguide is somewhere between
a buried and a ridge waveguide, the discovered effect will probably be
much higher in a ridge structure, as drawn in fig. (6.27). The silicon
waveguide will become very asymmetric when a stressing layer is applied
on top, as the stress can be relieved by expansion of the top of the silicon
waveguide. The bottom of the silicon waveguide cannot expand, as the
wafer underneath is non-expandable (due to its thickness of 500um).

The structure in fig. (6.27) has not yet been fabricated and it remains to
be seen how high a non-linear coefficient that can be obtained in stressed
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Figure 6.27: A ridge waveguide made with a stress layer on top. This structure

has not yet been fabricated. It is expected that the x(? value found in stressed PhC
waveguides originate from deformation of the holes. A ridge waveguide should therefore
exhibit a larger x® value than a PhC waveguide (when comparing non-enhanced x?
values), as stress releasing over the core region should be more pronounced for a ridge
waveguide.

silicon. The waveguide can be made single-mode by careful design, as
described in [14,15]. It also remains to measure the effect at higher fre-
quencies than 500kH z. The AC-amplifier used in the DC-shifted MZI
setup does not deliver a high enough signal for frequencies higher than
500k H z. Even with a faster AC-amplifier, the measurement frequency is
limited by the lock-in amplifier (signal recovery 7280/98), which cannot
measure beyond 2MHz. This is the fastest commercial lock-in amplifier
found, that can also measure for short integration times (an integration
time of one period is necessary, as described in section 3.5). To measure
the effect at higher frequencies, there must be fabricated a sample where
a larger phase swing is induced by a lower voltage. This is only possible
by increasing the affected waveguide length from 20um to a couple of
centimeters. IL.e. a normal waveguide is needed, as the loss in the PhC
waveguides limits the propagation length below 50um in the fabricated
samples.
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6.6 Conclusion.

The first measurements on PhC waveguides did result in several unex-
pected observations. By increasing the modulation frequency and by
reducing the electrode length, only two observations lacked a proper ex-
planation. The existence of a pure (2 value in silicon and the wavelength
dependent oscillations of the x(?) value.

To explain the oscillations of x(?) vs wavelength, a measurement
method was developed to determine the group index in a 20um long
PhC waveguide. The measured group index corresponds to the calcu-
lated group index obtained afterwards, and the oscillations in the group
index does explain the oscillations in the measured x(? value.

The origin of the unexpected x? value was determined by fabricating
a sample without a x(?) value and then inducing a ¥ value by applying
a stress layer on top of the sample.

Steps where taken to fabricate a sample with a x(2) value in a normal
index guiding waveguide. The first attempt was not successful but did
point towards an explanation on how stress induces a x(? value in silicon.

Plans have been made for making another index guiding silicon struc-
ture, that should posses an even higher material (non-enhanced) x?
value, than found in the PhC structure. Such a waveguide can also be
investigated for TM polarized light, which can lead to the discovery of an
even higher x(?) value.

When the effect has been transferred to a normal index guiding waveguide,
the effect should immediately be investigated for a possible cut-off fre-
quency. The big remaining open question is the cause of the effect on an
atomic level, and it could turn out that there is a cut-off frequency for the
effect. The author and coworkers have tried to come up with an expla-
nation for the effect that does not rely on perturbation of atomic orbitals
but no other theoretical explanations have been found. Perturbation of
atomic orbitals is an instantaneous effect for all practical applications.
But to quote Jens Martin Knudsen: It is the experiment that rules. For
x? in stressed silicon more experiments must be made before opening
the champagne.
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Chapter 7

Conclusion.

This goal of this project was to realize a switch in poled silica with a
switching voltage less than 300V. This goal was not accomplished. Ac-
tually the author has never poled a sample, as the lower limit for the
switching voltage is governed by the third-order non-linearity x(® of the
investigated material. Numerous attempts where made for increasing x ()
and the best result was obtained for silicon rich nitride (SRN), which is 5
times more non-linear than the Ge:SiON samples investigated at first. It
should be possible to make a switch in SRN that has a switching voltage
below 250V, but at the time, even this switching voltage was judged to
high for any device applications.

During the investigation of x(3) materials, a possible explanation for
the very high non-linearities reported through the nineties [1,2] was found.
This explanation shows that the only possible way for lowering the switch-
ing voltage is to increase the material non-linearity X3, Actually )
must be increased by a factor of 10 to reach a level where a device with
an interesting switching voltage could be possible. Material doping and
change of the waveguiding method are tried but without success. From
the investigation, it is concluded that: There are no mysteries left in pol-
ing of silica that can justify further research with the goal of making an
electro-optic integrated switch in silica.

To measure the non-linearity a precision method was developed due
to reproducibility problems experienced with the Bragg grating method
applied in the author’s research group. After developing the new method
called The DC-shifted MZI method the dominant measurement un-
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certainty is due to thickness variations of the investigated samples. To
reduce the uncertainty further, a new method must be developed for de-
termining the sample thickness. There is not observed any reproducibility
problems with the DC-shifted MZI method, which is also more versa-
tile than the Bragg grating method. The DC-shifted MZI method can
measure on all waveguides usable for a switch, i.e. on all single mode
waveguides. The total uncertainty for a determined x(® value is ~ 5%
including all error contributions.

When photonic crystal (PhC) waveguides where investigated a discov-
ery was made. After careful designed experiments and the development of
a method for measuring the group index of PhC waveguides this discovery
was clarified to be:

e Stressed silicon possesses a significant x(?) non-linearity.

The investigation of the PhC waveguide also led to a collection of impres-
sive results. That is

e The current record for a direct measured group index (ny = 220).

e The linear enhancement of the x(2 effect with the group index
predicted theoretically in [3] is experimentally verified for the first
time.

e The current non-linearity corresponds to V; x 1 < 2V x ¢m for the
high group index case

e By dividing the obtained results with the determined group index,
a non-linearity corresponding to V; x{ = 130V * ¢m is predicted as
the non-enhanced value.

Measurement with the aim of making a device that exploits the discovered
effect are planned. The most crucial question that still lacks an answer is
the frequency behavior of the stress induced x(®. If the effect diminishes
for fast modulations, then it cannot be used in practice. I.e. from the
application point of view, it is still to early to guarantee success.
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Appendix A

Fitting an ellipse.

A.1 Introduction of the challenges.

In chapter (3.3) ellipsoids are fitted to measurement points. The fitting
is not trivial and the procedure is gone through in this appendix. Basi-
cally the ellipses consists of measurement points, where the x-coordinate
and the y-coordinate are sizes of the fundamental 33.333 kHz function
and the second harmonic 66.666 kHz function, respectively. There are
two complications, that distinguish the measured ellipses from a mathe-
matical ellipse. To illustrate the two complications, an "ugly” measured
ellipse is plotted in fig. (A.1). The ellipse is measured for A = 1550nm
when Vp_p = 200mV at the LiNbO3 modulator, i.e. when the lowest
modulation voltage was used. This is expected to be the most error en-
cumbered ellipse.

The deviation in the x-direction is smaller, than the deviation in the y-
direction. The other problem is the non-uniform angular distribution of
the points.

A.2 Determination of the X and Y standard
deviations.

To fit the ellipse, the size of the Gaussian deviation in the x and y di-
rections must be determined. Luckily this information can be extracted
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Figure A.1: A measured ellipse for A = 1550nm when Vp_p = 200mV at the LiNbO3
modulator. The angular distribution of points is non-uniform and the deviation in the
x and y direction is non-equal (0, < o).

from the measurements. The ellipse x and y coordinates are determined
by measuring integral values as derived in eq. (3.20) and fitting the two
sets of measured points with two straight lines. An example of such a
line is given in fig. (A.2).

The projection of corresponding fundamental and 2-harmonic points onto
the fitted lines is the ellipse x and y coordinates. Each measured point
(;1:{c , y{ ) and (z%,y$) on the right and left plot (A.2),respectively, are en-
cumbered with measurement error. As the points are non-datatreated,
the deviation from the true value is Gaussian. There is no difference
between the two measured coordinates in the left plot (A.2), and it is

therefore assumed that the standard deviation is the same for x{ and

y{ and for =7 and yj. This is illustrated with error circles around two

corresponding points on fig. (A.3).

The measurement error can be determined from the plot (A.3), by rotat-
ing the coordinate system, so the determined line is the x-axis. Calling
the new coordinates (acéc ,yg ) and (z3,y5) , the rotated plot is shown in
fig. (A4).

The deviation from 0 in the yg /$_direction is solely due to measurement
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Figure A.2: Integrals values measured for the fundamental and 2-harmonic functions
using a lock-in amplifier as described in chapter (3.3). The ellipse x-value for each
point is found by projecting the point onto the fitted line (left fit) for the fundamental
measurement. The ellipse y-value (for the determined x-value) is found by projecting
the corresponding 2-harmonic point onto the line (right fit).

error'. The error in the xg/ *_direction is equal to the error in the yg /s.
direction, as the errors for :1:{ /$ and y{ /5 are equal. The plotted density

of the point distribution in the yg / *_direction, gives a Gaussian curve as

shown in fig (A.5).

The standard deviation O fls for yg /s are found by the normal standard
2

deviation formula using 0 as the measured true value.

1 f/s
0 gts = \/m > (i - 02 (A.1)

This deviation is as argued equal to O f/s- The value o _; is the standard
2 2

deviation in the ellipses x-coordinate and the value o s is the standard
2
deviation in the ellipses y-coordinate.

!This is only true, if the determined line on fig. (A.2) is without error, as the rotation
of the coordinate system is otherwise incorrect. If there are enough measurement
points, the determined line will be without errors. With 10000 measured points it is
assumed that the line is the true error-free line.
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Figure A.3: Integral values measured for the fundamental and 2-harmonic functions
using a lock-in amplifier as described in chapter (3.3). The two circles illustrate the
standard deviation for two corresponding measured points.

A.3 Fitting an ellipse.

The value at interest is b/a, where the eccentricity of the ellipse is € =
/12 + (b/a)?. The equation for the ellipse in cartesian coordinates is

2 2
T Y
2 + 2 1. (A.2)
A mathematical ellipse is plotted in fig. (A.6).
To fit the ellipse, with known x and y uncertainties, the points are shifted
to polar coordinates (illustrated in fig. A.7).

The equation for an ellipse in polar coordinates is
a’b?
a? sin(0) + b2 cos2(6)

r(0)* = (A.3)
The advantages of shifting to polar coordinates is that the ellipse function
7(0) is a function (there is one and only one value for r(#) for each value of
(#)). The points can be fitted using normal least square fitting procedure.
Transforming the ellipse points to polar coordinates and then making a
fit using the normal least square method is called the polar fitting
procedure.
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Figure A.4: Integrals values measured for the fundamental and 2-harmonic functions
using a lock-in amplifier as described in chapter (3.3) in a rotated coordinate system.
The two circle illustrates the standard deviation for the two corresponding measured
points.

A.4 Investigation of non-equal deviation effect.

When the points on a measured ellipse are fitted in polar coordinates,
a systematic error is introduced. The measurement error for the points
in cartesian coordinates was Gaussian, but when a 2D-Gaussian error
is transformed into polar coordinates, the error is no longer Gaussian
(see fig. A.8). Normal statistical methods will therefore not give correct
results.

A MonteCarlo?approach is used to determine the systematic error due to
the fitting procedure. To illustrate the concept of a Montecarlo method
imagine the value of m was unknown, but the formula for the area A,
of a circle (A, = 7 * r2) was known. Here r. is the radius of the circle.
To find = a 2D set (z.,y.) of random numbers with values in the range
[—1,1] is made. A set with 10000 points together with a circle of radius
1 is plotted in fig. (A.9).

Dividing the area of the circle with the area of the square is 22 = 4 gives
w/4. This is equal to the probability for a point lying inside the circle.

2 Any method that relies on the use of many random numbers is called a MontCarlo
method.



“main” — 2006/6/28 — 1|6:15 — page 152 — #168

152 Fitting an ellipse.
Probability Proba[bility
f s
05 05 Ya(mv) -0.1 0.1 Yamv)

Figure A.5: Distribution of points in the yJ (right) and in the y3(left) directions.
A Gaussian fit corresponds nicely to the points. This demonstrates the measurement
error is Gaussian distributed.

I,
N

Figure A.6: Mathematical ellipse with a = 1.7 + b. Mathematical means the ellipse
is generated from a formula (A.2).

Point ¢ lies inside the circle when iL‘g,,L- + ygﬂ- < 1. Using this formula it
is found that 7869 of the 10000 points lie inside the circle. That is, the
probability Pj,siqe of lying inside the circle is 0.7869. As the probability
is equal to 7/4, the value of = has now been determined to 3.1476. The
real value of 7 is 3.14159.

Whenever a Montecarlo approach is used, the random number gen-
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Figure A.7: Mathematical ellipse with a = 1.7 * b in polar coordinates. The same
ellipse in cartesian coordinates is shown in fig. (A.6)

erator must be investigated. The random number generator is used to
give a Gaussian distribution and to investigate it, a plot of the random
number density and a Gaussian fit is made in fig. (A.10).
As the random number density corresponds to the Gaussian curve (see
fig. A.10), the random number generator can be trusted.

A set of points on a mathematical circle with radius 1 and with two

Gaussian errors added is made. One Gaussian error with o, = 0.1 is
added in the x-direction and the other Gaussian error of oy = 0.2 is
added in the y-direction. The circle with the added error is plotted in fig.
(A.11).
The points are transformed to polar coordinates and the function for the
polar ellipse is fitted to the points. This is shown in fig. (A.12). If the
fitting procedure was without systematic error due to the non-Gaussian
distribution in polar coordinates, the fit in fig. (A.12) would be a con-
stant function with value 1 (y = 1).
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Figure A.8: Mathematical ellipse with a = 1.7 * b with an uncertainty ellipse for a
point. The ellipse is transformed to polar coordinates and the close-up view shows the
uncertainty is no more Gaussian. Normal statistical methods will not give the correct
result due to the non-Gaussian error distribution.

Figure A.9: Demonstration of the Montecarlo method. The points are uniform
random distributed between -1 and 1 in both the x and y direction. The circle has
radius 1. Determining the ratio of points inside the circle (= Pjpside), 7 is determined
to 3.1476. The correct value of 7 is 3.1416.
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Figure A.10: The points is the distribution of the random number generator and the
curve is a fitted normal distribution. As the points and the curve correspond nicely,
the random number generator is trustworthy.

Figure A.11:

Points on a mathematical circle with added errors in the x and y

directions with o, = 0.1 and o, = 0.2, respectively.
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Figure A.12: The circle in fig. (A.11) in polar coordinates. The black curve is fitted
using the normal least square fitting criteria. The correct fit is a constant function

with value 1 (red line).
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The result of the fit is the parameters of the ellipse and especially the
value of b/a. The value should be 1, as a circle was used, i.e. an ellipse
with eccentricity 0. This is repeated for different values of the standard
deviation in the x and y directions. The value of b/a is plotted in a 2D
plot (see fig. A.13) as function of the absolute uncertainty o, and of the
absolute uncertainty oy.

/ 1.200

0.25
1.156
1.112
b 1.069
0.9812

3 0.9375
0.8938
0.05

0.8500
0.15 0.20 0.25 0.30

Ox

Figure A.13: The value of b/a vs. o, and oy for a circle (correct value b/a = 1)
determined by the polar fitting procedure. As the determined value depends system-
atically on o, and oy, action must be taken to remove the systematic error from the
fitting procedure. This is done in section (A.4).

The plot of b/a vs. o5 and o, shows that action must be taken to get
around the introduced systematic error.

A.5 Investigation of non-uniform angular
distribution.

The other problem with the measured ellipse is the non-uniformity of the
angular distribution of the measurement points. To investigate if this
non-uniformity introduces an error, a number of partial circles are made
mathematically. To illustrate the angular filling factor three of these are
shown in fig. (A.14).

The first partial circle is a half circle (filling factor 180°) and the last par-
tial circle is a full circle (filling factor 360°). Gaussian errors are added to
the circle points in cartesian coordinates using the Montecarlo method.
The resulting circles are plotted in fig. (A.15).
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Figure A.14: Partial mathematical circles for different angle filling factor. The filling
factor is the angle (a) (in red).

2 2 2
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-2 -2 -2
Angle filling factor=180° Angle filling factor=270° Angle filling factor=360°

Figure A.15: Partial mathematical circles with added Gaussian uncertainty (o, = 0.1
and o, = 0.15) for different angle filling factor.

The Gaussian error is approximately equal to the worst measured ellipses
deviation. The error in the x and y directions are o, = 0.1 and o, = 0.15,
respectively. Using the polar fitting procedure introduces an error. A plot
of b/a vs. the angular filling factor for the circle is shown in fig. (A.16).
The figure shows both the problem with the non-uniform angular distri-
bution (the oscillations) and the figure shows the systematic error due to
the polar fitting procedure. The effect of the systematic error is that the
mean value of b/a is not 1 but 1.0247.

The value of b/a in the plot (A.16) does depend on the angular filling



“main” — 2006/6/28 — 1|6:15 — page 159 — #175

A.6 Solving the non-equal deviation problem. 159
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Figure A.16: Determined b/a value vs. filling angle for a circle of radius 1 and with
o0z = 0.1 and oy = 0.15. The oscillations are due to the change in filling factor. The
roughness of the curve is due to the limited number of points used in each Montecarlo
circle. The mean values deviation from 1 is because of the systematic error introduced
by the polar fitting procedure.

factor. The plot shows the maximum deviation due to non-uniform an-
gular distribution for the measured points is 2 — 3%o. This is a worst
case scenario both for the non-uniformity of the angular distribution and
for the Gaussian error’s. It is therefore assumed that the error due to
the non-uniform angular distribution is less than 1%o. An error of 1% is
added to the error of the final result because of this.

A.6 Solving the non-equal deviation problem.

In section (A.4), it was shown, that the polar fitting procedure intro-
duced a systematic error, when the deviations in the x and y directions
where non-equal. The size of the systematic error was determined using
Montecarlo simulations.

If the normalized deviations o, /a and o, /b are known, the Montecarlo
simulation can determine the exact systematic error Ejoqr it for the mea-
sured b/ameasureda value. The true value of b/ay,ye is then determined as.

b/a'true = b/a'measured/Epola'rfit- (A4)

That is, if the polar fitting procedure overestimates b/a by 10 percent
and the size of the overestimation is known, the true value is found by
dividing b/a with the overestimation factor (= 1.10).
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The trouble is that o,/a and oy/b are unknown for the measured
ellipse. The deviations o, and o, are known (see section A.2), but the
value of @ and b are unknown.

To determine a and b an iterative process is used. The polar fitting
procedure estimates a1 and by but the values are affected by a systematic
error. Measured points together with a ellipse determined using the polar
fitting procedure is shown in fig. (A.17).

X3(mv) X3(mv
2106 2 0.6)
f f
. X (mv
56 50 >(mv) P : 20)(z(mv)
-0.6 -0.6

Figure A.17: A measured ellipse for A = 1550nm when Vp_p = 200mV at the
LiNbO3 modulator with an ellipse fitted using the polar fitting method(left) and with
an ellipse fitted using the iterative polar fitting method(right). The ellipse curve is
encumbered with the systematic error.

To determine the systematic error, a Montecarlo circle with radius 1 and
with deviations o, /a1 and 0, /by in the x and y directions is made. The
circle is plotted in fig. (A.18).

Fitting the circle using the polar method, correction factors (a1, be,1)
due to the fitting procedure for a and b are found. The new values for a
and b are

az = ai/ac;
by = by /be.1. (A.5)

This procedure is repeated until convergence is obtained. To demonstrate
the procedure, a mathematical ellipse with b/a = 0.5 and with different
errors in x and y directions is made with 628319 Montecarlo points. The
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Figure A.18: A mathematical circle with radius 1 and with relative x and y error’s
equal to the errors of the measured ellipse in fig. (A.17).

high number of points ensures that the converged b/a value is 0.5. The
same circle with a reduced number of points is plotted in fig. (A.19). The
errors of o, = 0.2 and oy = 0.15 corresponds approximately to the error
of the worst measured ellipse (0,/a = 0.1 and o,/b = 0.15).

-3
Figure A.19: A mathematical ellipse with a =2, b =1, 0, = 0.2 and o, = 0.15.
Using the polar fitting procedure, the first b;/a; value is determined.

Then values for b;/a; are determined using the iterative process and the
determined value of b;/a; is plotted in fig. (A.20).
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Figure A.20: The value of b;/a; determined for the ellipse in fig. (A.19) as function
of iteration number(i). The true value is 0.5 and the first determined value using the
polar fitting procedure is 0.512. The final determined value is 0.49979 after making 11
Montecarlo circles. Point 1 is before the value is corrected using a Montecarlo circle.

The criteria used for convergence is that the last result (n) should not
differ more than 0.2%o form the average of the two results (n — 1) and
(n —2). That is

bn/a'n - (bn—l/an—l + bn—2/an—2) /
bn/a'n

This convergence criteria tries to avoid converging at a local extremum
like point 8 and 9 in fig. (A.20) by including the three last points.

Test runs show, that the polar fitting error for the final result is re-
duced to less than 1% with this convergence criteria. As convergence
is reached using a routine that oscillates around the end result, the left-
over error is non-systematical. The final procedure including the iterative
process is called The iterative polar fitting procedure.

2
< 0.0002 (A.6)
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Appendix B

Determining accuracy of
measurements.

B.1 Introduction.

In all experiments there are two distinct error type, that must be con-
sidered. The systematic error due to the finite good calibration of the
measurement instruments and the reproducibility error, i.e. the deriva-
tion between repeated ”identical” measurements. This appendix contains
a detailed description of both types of errors for the non-linear measure-
ment setup developed in this Ph.D. project. There are numerously places
where errors are introduced. Each error is investigated and a value for
the error is determined (each error contribution is written in bold font).
After the systematic error is determined, the reproducibility error for the
experimental setup is investigated.

B.2 LiNbO;3 calibration.

In the experiment used to calibrate the LiNbOs phase modulator there
are used two lock-in amplifiers, a voltmeter and an A/D-converter' to
measure electrical signals (see section 3.3). The setup is shown schemat-
icly in fig. (B.1).

'Four of the input ports on the analog to digital converter (A/D-converter) are
used.

163
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Figure B.1: The MZI setup used for measuring V;. The 6 red boxes performs a
measurement where systematic errors occurs.

The voltmeter is used to measure the amplitude (Aejectric) Of the electrical
signal (Aejectric*sin(wt+0)) on the LiNbO3 modulator. The voltmeter is a
Fluke 45 dual display multimeter. The voltmeter is only guaranteed
to be accurate within 4% at 33.333kHz. To decrease the uncertainty,
a measurement is performed, where the same sinus signal is measured
simultaneously by the voltmeter and by a Signal recovery 7280/98
lock-in amplifier. The lock-in amplifier is guaranteed to be accurate
within 6%o. The result is plotted in fig. (B.2).

The results measured with the voltmeter and with the lock-in amplifier
differ less than 2%o (see fig B.2), and it is therefore assumed that the
corrected result Wﬁféke’w”emd is within 6%02 of the true value.

The second systematic error is introduced by the two lock-in amplifiers
used to measure the electrical signal from the photo diode. The value in
search is Vy, that is found by solving the equation below(see eq. 3.28)

b J(A)

a Ji(A)’

(B.1)

as function of Agjectric- The values of a and b are measured by the

2The 6%o is the guaranteed accuracy for the lock-in amplifier. The lock-in amplifier
should normally be accurate within 3%.
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Figure B.2: The V,%“*¢ measured on the Fluke 45 dual display multimeter as
function of the V;’2¢¥~"" measured on the more accurate Signal recovery 7280/98
lock-in amplifier at 33.333kHz. The linear correction factor for the fluke multimeter
is W%i;ke,corrected — 0.9983 x* Vp%i;ke.

two lock-in amplifiers, as the fundamental (a) and 2-harmonic (b) sig-
nal, respectively. As the used value is the ratio b/a, the systematic
error is the ratio of errors from the two lock-in amplifiers. To deter-
mine the ratio error, A is measured 10 times for a chosen Agjectric-value
(W%ﬁke’cowmed = 704.9mV’) and then remeasured 9 times after the two
lock-in amplifiers have been interchanged. The measured results are plot-
ted in fig. (B.3).

As shown in fig. (B.3) the difference between the average V-value before
and after interchange of the lock-in amplifiers is 0.5%o.

An error also occur from the A/D converter used to measure the out-
put from the lock-in amplifiers. The 4 outputs from the lock-in amplifiers
are the fundamental x-value (zf), the fundamental y-value (ys), the 2-
harmonic x-value (z2_ ) and finally the 2-harmonic y-value (y,—g). The
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Figure B.3: The points are measured values of V; for repeated measurements for

the same modulation voltage (‘/T%“ske’c""ecmd = 704.9mV). The blue points are mea-

sured before interchanging the lock-in amplifiers and the red points are measured after
interchanging the lock-in amplifiers. The difference between the average value of the
measured V;-values before and after interchange of the two lock-in amplifiers is 0.5%.
As there is no systematic derivation between the blue and red points it is expected
that the difference in average value would approach zero if enough measurements where
compared, but the derivation of 0.5%o is still used to be on the save side.

corresponding® values of (z7) and of (ys) are plotted as points {zf,ys}
in fig. (3.8). To determine the error introduced by the A/D converter,
the four outputs (z,ys, z2—m,y2— ) from the two lock-in amplifiers are
connected to the four A/D-converter inputs (11, I2, I3, 1) in 3 different
ways. That is

1 connection: zp— I, yp — I, xo-g — [3and yo_ g — Iy

2 connection: zp— 1o, yp = I, xo g — Iyand yo g — I3

3 connection: zp— I3, yp = Iy, zo_g > I1and yo_ g — I>
(B.2)

The value of V; is measured for the same A, jectric-value (Vﬂ;ﬁ%ke’wwecwd =

704.1mV’) 10 times for each of the 3 connections. The measured results
are plotted in fig. (B.4).

3Corresponding values are measured simultaneously.
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Figure B.4: The points are measured values of V; for repeated measurements for the
same modulation voltage (V,fuke:corrected — 704 1m V). The blue points are measured
for the 1 connection, the red for the 2 connection and the green for the 3 connection
(see eq. B.2). The largest difference between the average measured V,-values is 0.44%c.
There is not observed any systematic derivation between the 3 measurement series and
it is likely that the derivation between the 3 average values would approach zero if
enough measurements where made. To be on the save side, the derivation of 0.44% is
still applied.
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As shown in fig. (B.4), the largest difference in average V;-value when
interchanging the A/D-converter inputs is less than 0.44%. The iter-
ative polar fitting procedure introduces a systematic error smaller
than 1% (see section A.5). The total systematic error for the determined
V.-value is

os(Vi) = \/(6%0)2 +(0.5%)2 +  (0.44%)> + (1%0)% = 6.1%0.(B.3)
N—— N—— N——— N——

oltmeter lock—in A/D—converter  Ellipsoid iy

The largest error is introduced by measuring the amplitude of the elec-
trical sinus signal on the LiNbO3 modulator. The voltmeter used for the
measurement is calibrated against a lock-in amplifier. The Signal re-
covery 7280/98 lock-in amplifier is a precision instrument and it is
therefore not easy to decrease this error. The systematic error (eq. B.3)
and the reproducibility error (see the last column in table 3.1 in section
3.3.3) are both around 5%. IL.e. it is not easy to decrease the error further
as both the systematic and the reproducibility errors should be decreased
simultaneously to obtain a better result.

The value of V; is measured as function of laser wavelength. The
center wavelength of the laser light is measured using a HP 86120B
multi-wavemeter. The instrument is guaranteed to measure the center
wavelength within +3ppm. The linewidth of the laser is measured using
an optical spectrum analyzer (OSA). A typical result is shown in fig.
(B.5).

The uncertainty of the wavelength is chosen as halve width for a 10dB*
drop of the intensity. The typical wavelength uncertainty is £10ppm.
The laser wavelength error is therefore

os(\) = | (8ppm)® + (10ppm)® = 10.0ppm. (B.4)
HP$6120B  fig.(B.5)

There is no reproducibility error for the laser wavelength determination,
as the wavemeter is guaranteed to be accurate within 3ppm and this error
includes all kind of errors. For the LiNb(O3 measurement experiment, the
uncertainties are

“The choice of 10 dB is arbitrary, but the resulting wavelength uncertainty is large
enough to ensure the ”true” result is within the uncertainty bar.
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Figure B.5: Spectrum of the an Ando 4321A laser, when the laser emits at 1550
nm. The halve width at 10 dB attenuation is 0.015nm, which is equal to an error
of £10ppm. Due to the limited spectral resolution of the optical spectrum analyzer
(0.01nm) the measured linewidth could therefore be artificial broaden, i.e. the real
error is probably even smaller than +10ppm.

Uncertainty for experimental measurement of
V. for LiNbOs modulator

Wavelength Ve Ve
systematic error systematic error reproducibility error
10ppm 6.1%o < 5.5%0

Table B.1: The error of the determined V. value for the LiNbO3 modulator is quite
low and to get more accurate results, the systematic error and the reproducibility error
must be reduced simultaneously. There exists, to the authors knowledge, no easy way
for obtaining such error reduction.

B.3 x® measurements.
The setup used to measure X,(S'Qi) is shown in fig. (B.6). Uncertainty is
introduced by the 5 red components.
The voltmeter used is a Fluke 45 dual display multimeter. It is not
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Figure B.6: The MZI used for measuring x®. The 5 red components introduces a
systematic error.

specified to work beyond 100 kHz, but the applied modulation frequency
is 200 kHz. The modulation voltage on the sample is always roughly
the same (the maximum ~ 110V,12F344014) " T4 establish the uncertainty
of the Fluke 45 dual display multimeter at 200 kHz, simultaneous
measurements on a high AC-voltage are made with two voltmeters. That
is with the Fluke 45 dual display multimeter and with a HP 34401 A
multimeter. The HP multimeter is guaranteed to be accurate within 4%
at 200 kHz. The result of the measurement is shown in fig. (B.7). After
correcting the fluke voltmeter readout, the measurement error is

o(fluke, 200kHz) = \/ (4%)? 4 (0.06%0)% = 4.0%. (B.5)
—— ~—
HP34401A  fig.(B.7)

The Fluke 45 dual display multimeter is used in the MZI setup (see
fig. B.6), as the HP 34401 A multimeter was borrowed from a different
DTU department.

The uncertainty of the lock-in amplifier is guaranteed to be less than
6%o and the wavelength uncertainty is 10ppm (see eq. B.4). To deter-

mine X(SQZ.), the length (Isgmpie), the height (dsgmpie) and the bulk phase
refractive index (¢ pyk) must also be determined, as X(SQZ-) is (see eq. 3.58)
(2) )\dsamplenqﬁ,bulk,O,SiAfleCtric

Xsi — “Sinv ;
! 2lsampleV7r§A§leCt”CFSi

(B.6)
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Figure B.7: V/%F¢ measured on the Fluke 45 dual display multimeter vs.

VHP344014 easured on a HP 34401A multimeter at 200 kHz. The corrected
value is found by multiplying the fluke readout with 1.052.

As the only sample type investigated with a pure x(®-value are photonic
crystal (PhC) waveguides, the length (Is4mpic) is determined by the fab-
rication process. The sample is fabricated by CMOS technique and the
design lengths are therefore replicated in a quasi perfect manner. The
derivation is around 1um for the whole sample (length 3 cm). The un-
certainty for the sample length due to fabrication is therefore less than
0.1%o. The origin of the length uncertainty is therefore not fabrication,
but the trouble of defining how fast the waveguide changes characteristics
from a normal buried waveguide to a PhC waveguide. On fig. (B.8) it
is demonstrated, that the absolute length uncertainty equals halve the
pitch (A/2). For a 20pm PhC waveguide with 425nm pitch, the system-
atic uncertainty is 2.1%.

The refractive index (n¢ puik,0,5:) in eq. (B.6) is the bulk index of the
nonlinear material. In this project the only material type having a pure
x@ value is silicon. The index of single crystalline silicon in the commer-
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Figure B.8: Picture of a 10um PhC waveguide. There is 10um from the center of the
first row of holes to the center of the last row of holes. The problem with the length
definition is to point at the correct beginning of the PhC waveguide. On the zoom-in at
the beginning of a waveguide, the definition problem is better illustrated. The buried
waveguide ends in a slab structure, where the light propagates until it enters the PhC
waveguide. The photonic crystal waveguide starts at the horizontal line where the
horizontal periodic structure begins. This line is however ill-defined, as the periodic
structure begins somewhere between the center of the 4 green holes (the missing hole)
and the center of the first row of holes. These two lines are marked with a dotted red
line. The middle in between the two possibly beginnings marked with a solid red line
is here defined as the start of the PhC waveguide. The uncertainty of this definition
equals the distance between the solid red line and the dotted red line, which equals
a quarter of the pitch (A/4). There is the same uncertainty at the other end of the
waveguide, and the total uncertainty therefore equals halve the pitch (A/2).

cial SOT wafers used is 3.478 + 1%o. The refractive index of silicon is not
measured for the specific sample, but a smooth curve approximation (see
fig. B.9) to reported [1] measurements for the bulk phase refractive index
of silicon gives this value. The uncertainty is determined by comparing
the determined result with other (n4 pyir,0,5i = 3.476) reported [2] index
values of silicon.

The sample thickness (dsgmpie) is determined by a microscope picture of
the samples end facet, as shown in fig. (B.10).

The distance in pixels is converted to um using a converting factor. There
is both a systematic error and a reproducibility error in connection with
the thickness measurement. The systematic error is due to uncertainty of
the conversion factor (32.23nm/pizel+4%0). The repeatability error for
a single measurement is determined to 6%, by measuring the height of a
sample 10 times. To reduce the uncertainty, the height is measured at
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Figure B.9: The points are measured values of the refractive index of crystalline
silicon from [1]. The red curve is a smooth curve approximation without any physical
origin. The refractive index of silicon is found to 3.478 using this method, while it
is evaluated to 3.476 using the Sellmeier type equation in [2]. The uncertainty of the
number is therefore around 1%.

least 3 times for each sample and the measurement uncertainty is there-
fore 3.5%. The total systematic error for a x(2) measurement is

os(x?) = | (4%)% + (6%0)% + (10ppm)? + (2.1%)?
voltmeter  lock—in A—width lsample

1/2

+ (4%0)? + (1%0)? + (6.1%0)> =4.6%. (B.7)
——r N N——

dsample Nsample Ve
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Air-Glass SiO_-wafer
l s L s

I
—— Red color intensity. 2
120 ———

~———Green color intensity.
Blue color intensity.

Averaged

Intensity (abitrary unit).

0 50 100 150 200 250

Pixel number

Figure B.10: The left picture is a microscope image of the end facet of sample c2r4.
The sample thickness (dsgmpie) is determined by averaging the intensity over the box
along the direction called Average. The result of the averaging is shown in the right
figure, where the intensity of the colors are plotted. The first vertical line marks the
boarder between air and the sample. The other vertical line marks the boarder between
the bottom glass and the silicon wafer.

The total reproducibility error is due to the electrode-electrode distance
(dsampie) measurement as already discussed and to the reproducibility
error of the ¥® measurement. The reproducibility error for the (2
measurement is around 4% (see fig. B.11).
The total reproducibility error is therefore

or(x) = \/(3.5%)2+ (4%)? = 5.3%.
N——— N~

dsample (fig.(B.11)
(B.8)

Both the systematic and the reproducibility error for the x(2 measure-
ment has been described. The dominant systematic error is due to the
voltmeter used for calibrating the Fluke 45 dual display multimeter.
To reduce this uncertainty, it would be advisable to permanently use a
more accurate voltmeter (e.g. Fluke 8508 A with uncertainty < 5%o), as
a more accurate calibration of the Fluke 45 dual display multimeter
could be compromised by drift.

To reduce the repeatability error, the optical loss in the sample must
be reduced. The repeatability error would then approach the error for the
repeated x(®) measurement of 1% (see fig. B.17 later in this appendix).
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Figure B.11: Measurement of XESQi) for a 20um PhC. waveguide. The length is chosen
as close as possible to 20um for the applied pitch of 425nm. The length is in reality

20.19um. The red points are remeasured to determine the accuracy of the measure-
ment. The average error is less than 4%.

Uncertainty for experimental measurement of x(?)

Wavelength x? x®@
systematic error systematic error reproducibility error
10ppm 4.6% 5.3%

Table B.2: The error for determination of x? is dominated by the reproducibility
error due to a high optical loss in the PhC. waveguides. The systematic error could be
reduced by using a more accurate voltmeter.
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B.4 x©® measurements.

The setup used to measure x() is shown in fig. (B.12). Uncertainty is
introduced by the 8 red components.

3dB Coupler

Polari Upper arm
Twister Oarlser3dBCoupIer Twister LiNbQ, Twister 3dB Coupler
000 || ‘ |-@1550 nm

phase .A.A. @1550 nm,__Unused

== modulator,
i
i
/\ Twister ! Lower arm
Unused i Sample Photo
..--| Attenuator |-- '”"E"te" (O”f’ﬁ;)-T ______ } under test ST diode
+phase contro| : - T
'Tle | AC+DC [1:2005.9 Lock-in amplifier
1 ILOC -In amplirier| ir combiner i :

Signal — . ; AC-probe {7 5cicin
generator -| AC amplifier |- T 1:4164@ | | ooiifier

DC generator | [33.333 kHz T

Figure B.12: The MZI used for measuring x®. The 6 red boxes introduces system-
atic errors.

The probe values have been determined by simultaneously measuring the
voltage before and after the probe. The DC-probe value was measured
using the Fluke 45 dual display multimeter before the probe and the
HP 34401 A multimeter after the probe. The measurement is shown
in fig. (B.13).

The uncertainty of the Fluke 45 dual display multimeter at DC is
guaranteed to be less than 0.25%0 and the uncertainty of the HP 34401
A multimeter at DC is guaranteed to be less than 0.1%c. The accuracy
of the DC-probe value is therefore better than 0.3%0 (see eq. B.9).

\/(0.25%0)2 + (0.1%0)? + (0.04%0)? = 0.27% (B.9)
—_—— Y= N>—=—
Fluke HP34401A  fig.(B.13)

The AC-probe is measured using the HP 34401 A multimeter to mea-
sure the high voltage AC before the probe and using the Signal recovery
7280/98 lock-in amplifier to measure after the probe. The result is
shown in fig. (B.14)

The uncertainty of the HP 34401 A multimeter at 33.333kHz is guar-
anteed to be less than 4% and the uncertainty of the Signal recovery
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Data: DC-probe
Equation: y = A*x
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Figure B.13: DC-voltage after the DC-probe vs. the input DC-voltage. The DC-
probe is 1:2005.9.

7280/98 lock-in amplifier is guaranteed to be less than 6%c. The ac-
curacy of the measured value for the AC-probe is therefore better than
4.1% (see eq. B.10).

\/ (4%)?  + (6%0)2 + (0.025%0)% = 4.04% (B.10)
N—— N N——

HP34401A  Lock—in  fig.(B.14)

The uncertainty of the Signal recovery 7280/98 lock-in amplifier
used to measure the electrical signal at the LiNbO3 modulator and used
for measuring the AC-voltage after the AC-probe is guaranteed to be less
than 6%o. The uncertainty of the Fluke 45 dual display multimeter
used to measure on the DC-voltage after the DC-probe is guaranteed to
be less than 0.25%0 and the accuracy of the laser wavelength is 10ppm
(see eq. B.4).

To determine x(%), the length (I sample ), height (dggmple) and refractive
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Figure B.14: AC-voltage after the AC-probe vs. the input voltage at 33.333kHz.
The AC-probe is 1:416.4 at 33.333kHz.

index (nggmpre) must also be measured, as 3 is

VDC’ /\dsam leNp.eff OAElECtTiC
XD [ =22 + Efrozen—in | = —si ple”9efJ071 g 19
\Xa'u dsample frozen—in ] inv 2lsampleV7rA§leCt”c \ )
@
“Xess

As noted in section (2.3), the effective ij’;) is the weighted sum of the

different material contributions. The weighting factor is the confinement
factor to the material. As only the effective X,(l?q’,) is measured, the ef-
fective phase refractive index (ngesf,0) is used instead of the materials
bulk phase refractive indexes as a good approximation of the confinement
factor weighted refractive index. ng ey o is either determined using the
Bragg wavelength (see appendix C) or calculated from the measured ma-

terial refractive indexes using the finite difference approximation®. The

SCalculations of the group index was made using the commercial software TempSe-
lene.
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error connected with the Bragg determination of ny .y is as noted in ap-
pendix (C) negligible due to the fabrication procedure. The error of the
calculated ny .y is estimated to be less than 1% by calculating ng ¢ f,0
for a sample (127_1) containing a Bragg grating and then comparing cal-
culations with measurements. The length (I54mpie) is measured by looking
at the electrode edge through a microscope and then translating the sam-
ple with a micrometer screw until the other end of the electrode is seen
in the center of the microscope. This is illustrated in fig. (B.15). There
are two kinds of uncertainties connected with the length measurement,
the systematic uncertainty due to the calibration error of the micrometer
screw (< 0.5%0) and the repeatability uncertainty. The typical repeata-
bility uncertainty for a single measurement is 1.5%o and it is found by
repeating a length measurement 10 times.

The sample thickness dgqmpie 15 measured using a microscope picture, as
shown in fig. (B.16).

The distance in pixels is converted to pm using a converting factor. There
is both a systematic error and a reproducibility error in connection with
the thickness measurement. The systematic error is due to uncertainty
of the conversion factor (32.23nm/pizel+4%0). The repeatability error is
determined to 1.5%, by measuring the height of a sample 10 times. To
improve the accuracy, each height measurement is repeated 3 times and
the standard derivation of the measured mean value is therefore < 1%.
The total systematic error for a x(3) measurement is

os(x®) = | (4.1%)? + (0.5%0)? + (0.25%0)% + (10ppm)? + (0.5%)?
——r e e e e —
AC—probe  DC—probe fluke A—width lsample
1/2
+ (2 4%0)% + (1%)% + (6.1%0)? = 4.3%. (B.12)
—_—— M ——
dsample Noeff Vr
The same lock-in amplifier is used to measure both Aﬁlecmc and Aglecmfi

(3)

The ratio of the values is used for determination of x4, and the systematic
error from the lock-in amplifier is therefore cancelled out.
The repeatability error is due to the length measurement, the height

(3)

measurement and the x4, measurement. In principle, the uncertainty for
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Top of
electrode.

Electrode
Length.

Bottom of
electrode.

Figure B.15: The length of the electrode is measured by moving the top electrode
into the center of the microscope picture. The sample is then translated using a
micrometerscrew until the bottom of the electrode is in the center of the electrode.
The electrode length then equals the translation distance on the micrometerscrew.

Ng.ef,0 should also be included, but it is negligible when measured using
a Bragg grating. The reproducibility error of a XS’;) measurement is less
than 1% (see fig. B.17).

The total reproducibility error is

a,(x(?’)):\/(3%)2+(1.5%o)2+ (1%)?> =3.1%. (B.13)

dsample lsample (fzg(B17))

The reproducibility error is only approximate, as the x® contribution is
evaluated separately each time. The uncertainty in connection with the
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Figure B.16: The left picture is a microscope picture of the end facet of sample 125_1.
The sample thickness (dsqmpie) is determined by averaging the intensity over the red
box. The result of the averaging is shown in the right figure, where the intensity of
the colors are plotted. The first vertical line (number 1) marks the boarder between
air and the sample. The other vertical line (number 2) marks the boarder between the
bottom glass and the silicon wafer.

x® measurement is summarized in table (B.3).

Uncertainty for experimental measurement of x(*)

Wavelength ) x®
systematic error systematic error reproducibility error
10ppm 4.3% 3.1%

Table B.3: The systematic error and the reproducibility error are approximately
equal. To reduce the error further, both error types must be reduces simultaneously.
The dominating term for the systematic error is the AC-probe value, which can be
improved by using a more accurate voltmeter (e.g. the voltmeter Fluke 8508 A un-
certainty < 1%) instead of the HP 34401 A multimeter. The reproducibility error
is dominated by the measurement of the electrode-electrode distance (dsgmpie). This
could be improved by using a measurement technique based on interferometric, but
the uncertainty is ultimately limited by the fact that dsgmpie varies on the sample. It
is therefore unlikely, that the error can be reduced significantly.
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Figure B.17: The induced E-O coefficient (xff)f) is measured as function of external

applied electric field. The (X((ﬁ,)) value is found by fitting the experimental data with
a straight line. The uncertainty of the determined (x.¥) value is only due to the
measured points derivation from the theoretical straight line. The uncertainty is less
than 1%.

References to Appendix B

[1] “http://www.crystran.co.uk/sidata.htm”. Homepage with crystal in-
formation.

[2] “Optical functions of intrinsic si: Region of near transparency”, 1987.
EMIS datareview RN=17803.
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Appendix C

The Bragg grating
measurement method.

C.1 Introduction.

The Bragg grating measurement method was used to characterize samples
early in this project. A more reliable and easier method was develop dur-
ing the project and the Bragg grating method was then abandoned. The
Bragg grating method measures the obtained shift of Bragg wavelength,
when the effective index (ng.sr) is changed due to an applied electric
field. In this appendix, the production of a Bragg grating is shown and
the connection between Bragg wavelength and applied field is derived.

C.2 Making a Bragg grating.

When very intense laser light is shined onto UV-sensitive glass, the index
of refraction is changed permanently in the glass. This phenomenon can
be used to change the index of refraction in a periodic manor along the
waveguide by shining light onto the sample through a phase mask, as
shown in fig. (C.1) below.

There is etched small grooves into the phase mask. The etching deep
is adjusted in such a way, that the difference in optical path length be-
tween the light propagating inside the glass and light propagating in the
etched grooves (in air) equals A\/2 on exit from the phase mask (A is the

183
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UV Laser light

S .
Can directi,, n

Index is enlarger
| due to UV-light

Figure C.1: Picture of a Bragg grating being made in a fiber. The phase mask lying
on top of the fiber creates an interference pattern with the period A/2. The fiber core
is UV-sensitive and its refractive index is raised permanently, at the places where the
intensity of the UV-light is high. Due to the periodicity of the phase mask, the index
varies periodically along the fiber core. The laser beam is scanned over the length of
the phase mask, when the grating is made. There was typical used 1kJ/cm? to write
the grating with a pulsed Eximer laser (see section 4).

wavelength of the UV laser light). The periodic length of the phase mask
is called the pitch (A). The interference pattern from the light gives a
varying intensity along the waveguide and the index of the waveguide is
enlarge periodically.

The inscribed periodic index contrast is called a Bragg grating. When
light is sent into the waveguide, it is reflected when the backwards scat-
tering light adds up in phase. The first order reflection is for light with
a wavelength )\, in the material such that light is reflected at every in-
terface between high and low index material, that is A,, = A. It is more
convenient to write the equation in terms of vacuum wavelength, i.e.

ABragg = Ng.effAA (C.1)

Light with a slightly different wavelength is also reflected and the re-
flection coefficient vs. wavelength can be derived mathematically using
coupled wave theory [1]. A transmission spectrum of a typical grating is
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shown in fig. (C.2), and the curve is approximated with a Gauss function.
The center wavelength is determined from the fitted Gauss.

0 -
Transmittion

54 Gauss fitting =
o Reflection {\ 0
T .10 o
£
; 15 Data: Bragg grating transmittion
S 7 Model: Gauss I
& Equation:
éﬂ 220 4 y=y0+A exp(-0.5*((x-xc)/w)"2) -
g) Chi”2/DoF =3.23439
o0 25 R = 0.96642 o
o0
s J
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Figure C.2: Bragg grating for a bmm long grating in a fiber core with a perma-
nent index modulation of 0.001. The Bragg wavelength is determined by fitting the
transmission spectrum with a Gauss function.

The uncertainty of the measured Bragg wavelength is around 2ppm and
as the pitch A of the phase mask is known with 6 digits (for example
1050.59nm), the refractive index is determined with 5 figures of accu-
racy from the Bragg wavelength. Combining eq. (C.1) with eq. (2.15)
describing the wavelength change due to third order non-linearity gives

3xff?

B0 = sz

E?. (C.2)

The quadratic increase in Aprqg¢ is exactly what is observed in measure-
ments of the Bragg wavelength vs. external applied electric field (see fig.
2.16).
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References to Appendix C

[1] “Fiber lasers”, 2002. Notes - contact jhp@com.dtu.dk.
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Appendix D

Derivation of Ang p,11(E) for

a X(B) material.

The Maxwell equations in matter are (in SI units)

0B
E = —(— D.2
V x 5 (D.2)
V-B = 0 (D.3)
VxH = Jﬁ%—?, (D.4)

where p; are the free charges and J; are the free currents. Glass is
magnetic linear and the magnetic susceptibility is approximately zero,
that is

B = uH (D.5)

In our experiment, it is assumed that there are no free charges and no
free currents inside the sample. This assumption is correct for materials
with a %) value as the sample is made out of electric isolating material
(glass). In the case of samples with a silicon core, there are some free
charges, but the number of free charges does not affect the results, as
shown in fig. (6.5). That is

pf = 0 (D.6)
J; = 0. (D.7)
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With these assumptions the Maxwell equations can be written

V.D = 0 (D.8)
0B

VxE = 5 (D.9)

V.-B = 0 (D.10)
oD

Using the curl operator (Vx) on eq. (D.9) and then substituting using
eq. (D.11), gives

2
VxVxE:—an—B = —QVXB: oD

ot ot “hogz  (D12)

As glass is not electrical linear, the general relation between the D field
and the E field must be used, that is

D = oE+ 2, (D.13)

where & is the polarization density vector. Using this relation and the
operator relation (V x Vx A =V(V-A) — V2A) in eq. (D.12), gives

O’E >
2 —

The weakly guided approximation gives V(V - E) = 0 which in turn gives
the propagation equation

0°E 2y
2
E— — = —— D.15
VB~ poco g HO™5¢2 (D-15)
The polarization density is a function of the electric field, that is

P = € (XijEj + XE?,)CE]Ek + XZ(‘?I)g;lEjEkEl +.. ) , (D.16)

where Einstein’s notation for summation has been used. As glass is
isotropic x = x * I, Xz(jl)c = 0V1,j,k and the only nonzero elements of

the x® tensor are listed in table (D.1).
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Elements of x().

@ .8 .03
T ER T e e
X1122 = X1133 = X2211 = X2233 = X3311 — X3322

@ & .68 _ B _. 03 _ 3
X1212 = X1313 = X2121 = X2323 = X3131 — X3232

B @3 .03 .06 .63 .6
X%??)Ql = X%?:’S){ﬂ = X(231)12 = X(%332 = X3113 = X3223
Xi111 = Xii22 T Xiziz + Xi221

Table D.1: The non-vanishing elements of the x®) tensor and the relations between
these elements for isotropic symmetry [1].

For an isotropic material, the polarization density matrix can be split
into a linear 2% and a non-linear Z2N° part, that is

P = eox B + EOngl)glEjEkEla (D.17)
_ —————
7y PNL

2

where terms of order higher than three are set to zero. The propagation
equation (D.15) can be written as

1+ x O’E P pNL

2 —
VB - 5t = (D.18)

where the relation (1 + x)eouo = 12-_2x has been used. To solve this dif-
ferential equation approximately forolight propagating in the x-direction
subjected to an electric DC field in the z-direction, guesses for two solu-
tions are made. That is a TE polarized solution

0
E=| E, (D.19)
Epc
and the TM polarized solution
0
E = 0 , (D.20)

Eop + EDC
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where E,, = Re(E(w)e™!). To find the TE solution, gtzN " for TE is
derived
92 »PNL 1 92 (3) (3)
Ho ( 12 )1 = % 12 (Xl 2,2 2EopEopE0p + X122 3EopEopEDC
3 3
+ Xg,% QEOpEDCEop + Xg % 3, 3EopEDCEDC
3
+ Xg ?), 2, QEDC’EopEop + Xg ?), 2, 3EDC’EopEDC
+ Xg?), 2EpcEpcEop + X 3, 3 3EDCEDCEDC)
_— (D.21)
>N L3 (@ Q
Ho ( 012 )2 = % 52 (XQ 2.2,2FopEopEop + X35 2 sEopEopEDC
+ Xg?% QEOPEDCEop + ng,?,,?,EopEDCEDC
+ Xg’?)’ EDCEOPEOP + ng?), 2, 3EDCEopEDC
+ ngg oEpcEpcEey + Xg % 3 3EDCEDCEDC)
19° (@ @) 0
= %@ ( X2,2,2 2Eop + X2,2.33E0pEDC
3 3
+ Xg?), 3BpEhc + Xg,:z,,?,,onz?E/Q:)C)
102/ 3 3
= %@ (Xg,%,Q,QEgp + 3X§,%,3,3E0PE%C) (D.22)
Al L3 (@ 0
Ho ( 92 )3 = a o ( X3.22.2F0pEopEop + X3 2.2 3EopEopEDC
+ xé?%,g,onpEDchp + x5 3.3 BpEpcEpc
+ ng; EDC'EDC’Eop + Xg % 3 3EDCEDCEDC')
1 62
= 2 \X ( ) 23F%Ec + x5 33,2 FayEc
0
+ X:(’,% E2 »EpC + X:(a :2, 3 3E§’)C)
1 92
= _%ﬁ ( X2233 EDC+X:(3?)>33EDC)
1 92
T 2o <3X2 2,3 3EopEDC’) (D.23)



“main” — 2006/6/28 — 1|6:15 — page 191 — #207

191

where the time differentiation removed all the terms, that are solely DC.
All in all the pg ( at2N L) vector field is

9297 NL
Mo (7(%2 ) =

Ignoring terms involving Egp (light with the double frequency) and Eg’p
(light with the triple frequency) simplifies the non-linear term further

0
2 ( (3
o (Xg,%a 2Eop + 3X§ ) 3 SEOPEDC> . (D.24)
52 3
otz (3 g % 3 3EopEDC)

§w| =

0
82,@1\71’ 1 o2 5
w (P27 = L o (B )

0

1 0

3 2

= _23X§,%,3,3E%7c aajf;"p . (D.25)
CO 0

Substituting this in the propagation equation gives

0 0 ) 0 0
1
V(| Ep |+ o0 - J;X% Ep |+ 0
0 Epc % 0 Epc
0
3 9?
— 3X§;3,3E§,Cﬁ E, |. (D.26)
0

This equation can be split into two separate equations, that is a DC equa-
tion and an optical equation. The DC equation is not accurate because
of the weakly guided approximation. The equation for the optical field is

0 0 0
1+x 02 1, @3 5 02
Vi| E — — | E = =3 Ei.— | E =
OOp c% Ot2 op cg X2,2,33DC of2 OOp
0 (3) 2 0
14+ x+3x Efqhq 62
v2 | E, _ 622,2,3,3 D - Eyp | =0 (D.27)
0 0 0
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The solution to this differential equation is

0
E = | Re(Epek*—wt) || (D.28)
0

where k = nkg and n? =1+ x + 3X§2,3,3E2DC' I.e. the non-linear term
alters the refractive index. The change in index Anrg(Epc) is

Anrg(Epc) = \/1 +x+ 3X§?%,3,3E%C’ —V1+x
= 1+x \/1+%—1 (D.29)
Power series development of /1 + x to first order gives
Anrg(Epc) = 3)(5’%2,3%%0 (D.30)

where the relation ng = /1 + x has been used. To find the TM solution,
uo% for TM is derived

52 pNL 1 62 3)
Ho ( e )1 = %@ <X1,3,3,3(E0p + Epc)(Eop + Epc)(Eop + EDC))
= 0 (D.31)
aZgzNL 1 82 (3)
Ho ( 912 )2 = %ﬁ <X2,3,3,3(E0p + Epc)(Eop + Epc)(Eep + EDC’))
=0 (D.32)
o> pNL 1 02 3
Ho < or2 )3 = %@ (x;(),,;);’y,,;;(Eop + Epc)(Eop + Epc)(Eop + EDC’))
10% / (3
= 252 (X:(s,z)s,:s,zs(Egp + 3E§pEDC +3EpEpc + E/%c))
0
10% / (3
= %@ (Xi(’,,%,3,3(Egp + 3E§pEDC + 3EOPE%C)) (D-33)
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All in all the pg (%) vector field is
02 pNL 1 0
" ( or? ) 2| 2 (e 3 02 2
ot2 (X3,3,3,3(Eop + 3EopEDC + 3E0PEDC))
(D.34)

Ignoring terms involving Egp and E‘;’p simplifies the non-linear term fur-
ther

62,@NL 1 0
M(W) ~ 2\ e (e L

R (X3,3,3,33E0pEDc)

1 0
3

= 53x)33Ebc 0 : (D.35)
€0 82 Eop
ot? _

Substituting this in the propagation equation gives

0 0 ) 0 0
1
([ o |+[ o - #% 0 |+[ o
c
Eop EDC 0 Eop EDC
1 0
3
= _23X§,,:2,,3,3E%)c 0 (D.36)
o 82 Eop
ot2

This equation can be split into two separate equations, that is a DC equa-
tion and an optical equation. The DC equation is not accurate because
of the weakly guided approximation. The equation for the optical field is

0 0 :
1+x 8 1,
Vil oo -l B 0—23x§,§,3,3E% ¢ a2OE 7
Eop 0 Eop 0 375201)
0 3) g2 0
1+ x+3 Ebe 0
[ o B X X23,3,3,3 DC = 0 =0 (D.37)
C
Eop 0 E,p
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The solution to this differential equation is

0
E= 0 , (D.38)
Re(Eoekwfiwt)

where k = nkg and n?> = 1+ x + 3X:(),??),,3,3E%c- L.e. the non-linear term
alters the refractive index. The change in index Anpy(Epc) is

Anrym(Epc) = \/1 +x+ 3X§?:2,,3,3E%c —Vv1it+x
3) 2
3X:(’, 333DC

= 1+ 14— =22 ] D.39
V1+x \/ Tt (D.39)

Power series development of 1/1 + z to first order gives

3 (3) E2

Anry(Epc) = %‘ZDC (D.40)

where the relation ng = v/1 + x has been used.

When a permanent electric field Efrozen-in i frozen into the glass by
poling, the combined effect of X(3) and FEfrozen-in 1S equivalent to a first
order nonlinearity x(?). To derive an expression for x(?), the symmetry
operations for the poled glass are considered. The electric field is in the 3
direction (the z-direction), and as the glass is otherwise isotropic, there is
still inversion symmetry in both direction 1 and direction 2. The inversion
operation is R,p = —das, where 8,5 is the Kronecker delta. As x(?) must
obey the symmetry of the glass

2 2 2
Xz(jl)c = Rllxz(jl)c = (_1)mxz(jl)c
Xk = Raaxiih = (—1)™xih
xﬁf,l = 1“3111‘7522X§]2-;)c = (—1)n1+n2X§]2-,)c, (D.41)

where n; is the number of 1’s among ijk and ng is the number of 2’s
among ¢jk. This for example means that
2 2 2
X§1)1 = —13Xg1)1 < Xg1)1 =0

2 2 2
X§3)3 = _1X§3)3 < Xg3)3 =0

Xim=-1x3 e x=o. (D.42)
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The only surviving terms are the ones where there is an even number of
both 1’s and of 2’s. The is also rotation symmetry for any angle around
the z-axis. There is especially 90° rotation symmetry. That is

2 2 2
Xgl)B = C4X§1)3 = Xg2)3 (D.43)

The only surviving elements are presented in the table below.

Elements of x(?).
2 2 2 2 2 2
X§21;3 = Xg3)1 = Xgl)l = Xg2)3 = X§3)2 = X§,2)2
X333

Table D.2: The non-vanishing elements of the x? tensor and the relations between
these elements for a medium that is isotropic in all xy cross sections.

To find the effect of x(?) the propagation equation (D.18) must be solved
for TE and TM polarized light. That is a TE polarized solution

0
E= E,p (D.44)
Epc
and the TM polarized solution
0
E= 0 , (D.45)
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196 Derivation of Ang pui(E) for a x) material.

To find the TE solution, o2 " for TE is derived

at2
92 pNL 1 02 2 9
Ko (T) _28_ <X§%2EopEop +X§)%,3EopEDC
1 &3
+X{35EpcEop + X1} 3Epc Eno)
— 0 (D.46)
9?2 pNL 1 02
i (S, = G (e + 38 BB
é% EDCEop-l-ng,gEDcEDC)
1 92 (2)
= =2 (22 . EpcE ) D.47
c(z) 12 ( X2,2,3#DC Lop ( )
9P pNL 1 02 2 9
wo(Tom). = zam (Chablen + x§3aFoc
383 2o Bop + X$ 3 Bp0 Enc)
1 92 2 2
= gg (X:(’,%2E2 +X:(s 5)3,3E12)C)
10° (2) m2
= %? <X3,2,2E0p) (D.48)
All in all the ug ( at;“) vector field is
0
2 pNL 1 ) 9
w (227 - | % (2x§,5,3EopEDc) . (D.49)
ot? ck

52 2
e (XI(S,%QEgp)

Ignoring the term with Egp (the double frequency), simplifies the non-
linear term further, that is

0

92 pNL 1 2 (2)
05 B ) om
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Substituting this in the propagation equation gives
v? E(i,,, + 8 — 1+_2x8_22 EOO,, + 8
0 Epc o 0 Epc
- %2X§2,3EDC§—; Ez,p . (D.51)

This equation can be split into two separate equations, that is a DC equa-
tion and an optical equation. The DC equation is not accurate because
of the weakly guided approximation. The equation for the optical field is

0 0 0
14+ x 02 1 2 0?2
VI Bo ) - “aam | Pe | = g2esloogs | B |
0 0 0 0 0
0 (2) 0
1+ x+2x553Epc 62
vi| E, | - o 52 | B | =0 (D.52)
0 “0 0
The solution to this differential equation is
0 .
E = | Re(Epek*—wt) |, (D.53)
0

where k = nky and n?2 =1 + x + ZXg?%,g,EDC. I.e. the non-linear term
alters the refractive index. The change in index Anyg(Epc) is

Antg(Epc) = \/1 +x+ QX%,:’,EDC —v1+x
(2)
2 E
- J1+x \/1+le’%xm—1 (D.54)

Power series development of v/1 + z to first order gives

2 2
2X§,%,3EDC _ X(Tf)z,effEDC

2n0 N

Antg(Epc) = ) (D.55)
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where the relation nyg = /1 + x has been used. As X%,g originates from
an electric field frozen into the glass sample, it is called an effective first
order nonlinearity X%)E, eff- 1O find a connection between Xﬁ_,%, eff and

X"(IZ}%}, the refractive index change caused by X%)E and an electric field

Epc in the presence of a frozen-in electric field Eyq,en—ir is investigated.
Equation (D.30) gives

3X5§)E (EDC + Efrozen—in)2

A E =
nre(Epc) M0
o 3X§§;5 (E%C + E?Tuzenfin + 2EDCEfrozen—in)
B 2710
(D.56)
The linear part of the refractive index change is
34/(3) EpcE »
AnTE(EDC)llinear = XTE no frozen_in (D57)

This is equal to the refractive index change caused by XE,? %3’ ef > and by
combining equation (D.55) with (D.57), the following relation between
Xg?%; eff and Xgi% is derived

2) (3)

XTEeff = 3XTEEfrozen—in- (D.58)
To find the TM solution, g —2—825‘];NL for TM is derived
02 pPNL 1.0% [ (2
o ( e )l = g (3(Ber + En) (Eop + Boc)
=0 (D.59)
02 pNL 1 0% [ (9
Ho ( 912 )2 = 92 <X2,3,3(Eop + Epc)(Eop + EDC’))

(D.60)

2 (Xg?:z,,?,(Eop + Epc)(Eep + EDC’))

QD
)

2
(X:(s,f)s,s(EZp +2EpEpc + E%c))

o5
® T

=
S
VRS
Q
- )
¥y
h
N——
w
Il
oﬁw| = oﬁw| = oﬁw| - < oﬁm|
gl

(Xg?f)’),?;(Egp + 2Elopl?DC’)) (D.ﬁl)

D
o~
N
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All in all the pg (%) vector field is
0
2 gpNL 1
m % - = 0 (D.62)
ot? |\ (@ (2
ot2 (X3,3,3(E0p + QEOPEDC)>
Ignoring terms involving Egp simplifies the non-linear term further
0
(82 PNL ) 1 0
Bo\ =55 — = 3
ot? 2 2 [ (2
O\ & (x352B0Eno)
1 0
= S Epe| 0 . (D.63)
CO IR g} 82E0p
o2
Substituting this in the propagation equation gives
0 0 0 0
1 0? _
vl o |+[ o e I I I
Eop EDC 0 Eop EDC
0
— 2 3Bpe | 0 (D.64)
CO 19y 62Eop
ot2

This equation can be split into two separate equations, that is a DC equa-
tion and an optical equation. The DC equation is not accurate because
of the weakly guided approximation. The equation for the optical field is

0 0 0
1+ x 0 1
V2 0 — CQXW 0 = c_22X:(f§’3EDC 20 =
E,p 0 Eyp 0 861:3201:
0 (2) 0
1+x+2 Epc 9?
v o | - STXTNas e I (D.65)
C
Eop 0 E,p
The solution to this differential equation is
0
E= 0 , (D.66)

Re(EOekw—iwt)
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where k = nkg and n? = 1+ x + 2X:(J,?:2,,3EDC’- I.e. the non-linear term
alters the refractive index. The change in index Anpar(Epc) is

Anru(Epe) = 1+ x+2)3Epc — I+ x

©)
2w B
- Jitx \/1+M—1 (D.67)

14y

Power series development of /1 + x to first order gives
2 2
2X§,:2,,3EDC _ X(Tj)w,effEDC

D.68
oo o (D.68)

Anry(Epc) =

where the relation ng = /1 + x has been used. As X;(g??),,g originates from
an electric field frozen into the glass sample, it is called an effective first
order nonlinearity X%)v[,e s To find a connection between ngl)v[,e if and

X'_([?])M’ the refractive index change caused by Xg:}z)v.r and an electric field

Epc in the presence of a frozen-in electric field Erozen—in is investigated.
Equation (D.40) gives

3X5§])\4 (EDC + Efrozen—in)2

A E =
nrym(Epc) 5110
3D (B2 + B2, i +2EpcE :
_ XTM( Dc T frozen—in + DC frozen—m)

2n0

(D.69)
The linear part of the refractive index change is

3X§§])\/[EDCEfrozen—in
A'nfTM(EDC’)|li’near = (D'70)

ng
This is equal to the refractive index change caused by X%)VI, ef > and by

combining equation (D.68) with (D.70), the following relation between

X%)V[ ef and ng’ 1)\/1 is derived

ngj)\/[,eff = 3X§§j)\/[Efrozen—m- (D71)
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To summarize the results,it has been found that
3+3) 2 3,(3) g2
Antg(Epc) = X22837DC _ 2Xrrtbe (D.72)
3X(3) E2 3 3) E2
Anr(Epe) = —A237DC_ SXTMIDC (p73)
2ng 2n
X’g?J)E‘,eff = 3X{(I§%]Efrozen—in (D74)
ng])\/[,eff = 3X§§])\/[Efr0zenfin- (D.75)

Instead of looking at the polarization density vector, a more phenomenol-
ogy approach is often used. The refractive index is written as

1 1

n(E) =no — Eng — EsngEQ +... (D.76)
This definition is more simple than inspecting of the polarization density
vector, and there is no need for symmetry considerations. The physi-
cal refractive index is simply Taylor expanded around zero field. The
drawback of this approach is that it contains less information about the
coefficients vt and s. As the coefficients t and s are used in the litera-
ture, conversion equations between these coefficients and x® and (3
are needed. By inspecting the equations (D.55, D.68, D.72 and D.73)

together with (D.76) it is easily derived that

2)

2X(TE
tTE,eff = —74’6” (D77)

T

2)

2X(TM
rMeff = —74’6” (D.78)

1o

3)

3X(
ST = — ZE (D.79)
L)
(3)

3
spn = —XIM (D.80)

%)

References to Appendix D

[1] P. Butcher and D. Cotter. The elements of nonlinear optics. Cam-
bridge University Press, 1990. ISBN 0-521-42424-0.



“main” — 2006/6/28 — 1|6:15 — page 202 — #218

202




“main” — 2006/6/28 — 1|6:15 — page 203 — #219

Appendix E

The confinement factor for
a PhC waveguide.

The confinement factor was kindly determined by Lars Frandsen. It was
calculated using the software package MPB [1] and for the mode of inter-
est, the confinement factor is shown together with the bandgab diagram
in fig. (E.1)

The non-physical fluctuations is due to mode crossing with cladding
modes. The cladding modes only appear in 3D calculations and they
are propagating in the silica above and below the silicon layer. They are
not represented properly in the calculation due to the continuous boarder
condition applied in MPB. The modes are better described in a FDTD
calculation, where the boarder conditions are absorbing. The wrongful
representation of the crossing with cladding modes also means that effects
solely due to the third dimension will be ill represented. The oscillation
found for the group index both by measurements and by 3D FDTD cal-
culations will be very hard to find in MPB due to the different boarder
conditions.

The calculated points for the confinement factor are sorted by the
black modes distance to other modes and only the points on the green
line in fig. (E.1) are considered trustworthy. The points on the green
line corresponds to points on the black curve, which are long away from
the places where the mode crosses with another mode (evaluated by eye).
The green points are fitted with a parable as shown in fig. (E.2) and the
parable is used for evaluating the confinement factor in the eq. (3.58) for

203
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Confinement factor

Normalized frequency A/A

0.0 : : : : : : : : : 0.4
0.0 0.1 0.2 0.3 0.4 0.5

Wavevector kZA/Zn

Figure E.1: The bandgap diagram for the PhC waveguide. The thick black line is the
mode investigated and the thick red curve is the calculated confinement factor to the
silicon. Due to mode crossing, the confinement factor makes non-physical fluctuations.
The green line represents the trustworthy points.

(2)

determining the x¢ore value.

The derivation due to the less than perfect determination of the confine-
ment factor introduces a systematically and wavelength depended error.
The size of the error is evaluated to 2% by looking at fig. (E.2). The
confinement factor calculation will in the future be improved by using 3D
FDTD calculations. This systematic error is not included in the error cal-
culation in appendix B, as there are other dominant contributions. The
problem with the confinement factor error is the wavelength dependency,
which is not pronounced for the other error type discussed in appendix
B. The error of 2% is probably not detectable on the plots of nge vs.
wavelength but care must be taken when there exists a systematic error,
which depends on a plotting parameter.
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0.94 1 =
-
o
I3t 0.92
& .
N
g Data: Calculated confinement factor

0 90 _ Model: Parabola L
E . Equation: y = A + B¥x + C*x"2
. g Weighting: Equal
= Chi"2/DoF = 0.00002
g 0.884| r2 = o0982 r
o A 027692 —0.65574

B 192731 ~0.87885
0.864] € 075754 020334 L
T T T T T
1.40 1.45 1.50 1.55 1.60
Wavelength (um)

Figure E.2: The green line connects the trustworthy confinement factor points from
fig. (E.1). The points are fitted with a parabola, i.e. with a smooth curve without to
many fitting parameters.
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