220 research outputs found
El Niño–Southern Oscillation in Tropical and Midlatitude Column Ozone
The impacts of El Niño–Southern Oscillation (ENSO) on the tropical total column ozone, the tropical tropopause pressure, and the 3.5-yr ozone signal in the midlatitude total column ozone were examined using the Goddard Earth Observing System Chemistry–Climate Model (GEOS CCM). Observed monthly mean sea surface temperature and sea ice between 1951 and 2004 were used as boundary conditions for the model. Since the model includes no solar cycle, quasi-biennial oscillation, or volcanic forcing, the ENSO signal was found to dominate the tropical total column ozone variability. Principal component analysis was applied to the detrended, deseasonalized, and low-pass filtered model outputs. The first mode of model total column ozone captured 63.8% of the total variance. The spatial pattern of this mode was similar to that in Total Ozone Mapping Spectrometer (TOMS) observations. There was also a clear ENSO signal in the tropical tropopause pressure in the GEOS CCM, which is related to the ENSO signal in the total column ozone. The regression coefficient between the model total column ozone and the model tropopause pressure was 0.71 Dobson units (DU) hPa^(−1). The GEOS CCM was also used to investigate a possible mechanism for the 3.5-yr signal observed in the midlatitude total column ozone. The 3.5-yr signal in the GEOS CCM column ozone is similar to that in the observations, which suggests that a model with realistic ENSO can reproduce the 3.5-yr signal. Hence, it is likely that the 3.5-yr signal was caused by ENSO
Rare B decays and Tevatron top-pair asymmetry
The recent Tevatron result on the top quark forward-backward asymmetry, which
deviates from its standard model prediction by 3.4, has prompted many
authors to build new models to account for this anomaly. Among the various
proposals, we find that those mechanisms which produce via - or
-channel can have a strong correlation to the rare B decays. We demonstrate
this link by studying a model with a new charged gauge boson, . In terms of
the current measurements on decays, we conclude that the branching
ratio for is affected most by the new effects.
Furthermore, using the world average branching ratio for the exclusive B decays
at level, we discuss the allowed values for the new parameters.
Finally, we point out that the influence of the new physics effects on the
direct CP asymmetry in B decays is insignificant.Comment: 15 page, 6 figures, typos corrected and references added, final
version to appear journa
Design Novel Dual Agonists for Treating Type-2 Diabetes by Targeting Peroxisome Proliferator-Activated Receptors with Core Hopping Approach
Owing to their unique functions in regulating glucose, lipid and cholesterol metabolism, PPARs (peroxisome proliferator-activated receptors) have drawn special attention for developing drugs to treat type-2 diabetes. By combining the lipid benefit of PPAR-alpha agonists (such as fibrates) with the glycemic advantages of the PPAR-gamma agonists (such as thiazolidinediones), the dual PPAR agonists approach can both improve the metabolic effects and minimize the side effects caused by either agent alone, and hence has become a promising strategy for designing effective drugs against type-2 diabetes. In this study, by means of the powerful “core hopping” and “glide docking” techniques, a novel class of PPAR dual agonists was discovered based on the compound GW409544, a well-known dual agonist for both PPAR-alpha and PPAR-gamma modified from the farglitazar structure. It was observed by molecular dynamics simulations that these novel agonists not only possessed the same function as GW409544 did in activating PPAR-alpha and PPAR-gamma, but also had more favorable conformation for binding to the two receptors. It was further validated by the outcomes of their ADME (absorption, distribution, metabolism, and excretion) predictions that the new agonists hold high potential to become drug candidates. Or at the very least, the findings reported here may stimulate new strategy or provide useful insights for discovering more effective dual agonists for treating type-2 diabetes. Since the “core hopping” technique allows for rapidly screening novel cores to help overcome unwanted properties by generating new lead compounds with improved core properties, it has not escaped our notice that the current strategy along with the corresponding computational procedures can also be utilized to find novel and more effective drugs for treating other illnesses
Novel Inhibitor Design for Hemagglutinin against H1N1 Influenza Virus by Core Hopping Method
The worldwide spread of H1N1 avian influenza and the increasing reports about its resistance to the current drugs have made a high priority for developing new anti-influenza drugs. Owing to its unique function in assisting viruses to bind the cellular surface, a key step for them to subsequently penetrate into the infected cell, hemagglutinin (HA) has become one of the main targets for drug design against influenza virus. To develop potent HA inhibitors, the ZINC fragment database was searched for finding the optimal compound with the core hopping technique. As a result, the Neo6 compound was obtained. It has been shown through the subsequent molecular docking studies and molecular dynamic simulations that Neo6 not only assumes more favorable conformation at the binding pocket of HA but also has stronger binding interaction with its receptor. Accordingly, Neo6 may become a promising candidate for developing new and more powerful drugs for treating influenza. Or at the very least, the findings reported here may provide useful insights to stimulate new strategy in this area
Propofol Directly Increases Tau Phosphorylation
In Alzheimer's disease (AD) and other tauopathies, the microtubule-associated protein tau can undergo aberrant hyperphosphorylation potentially leading to the development of neurofibrillary pathology. Anesthetics have been previously shown to induce tau hyperphosphorylation through a mechanism involving hypothermia-induced inhibition of protein phosphatase 2A (PP2A) activity. However, the effects of propofol, a common clinically used intravenous anesthetic, on tau phosphorylation under normothermic conditions are unknown. We investigated the effects of a general anesthetic dose of propofol on levels of phosphorylated tau in the mouse hippocampus and cortex under normothermic conditions. Thirty min following the administration of propofol 250 mg/kg i.p., significant increases in tau phosphorylation were observed at the AT8, CP13, and PHF-1 phosphoepitopes in the hippocampus, as well as at AT8, PHF-1, MC6, pS262, and pS422 epitopes in the cortex. However, we did not detect somatodendritic relocalization of tau. In both brain regions, tau hyperphosphorylation persisted at the AT8 epitope 2 h following propofol, although the sedative effects of the drug were no longer evident at this time point. By 6 h following propofol, levels of phosphorylated tau at AT8 returned to control levels. An initial decrease in the activity and expression of PP2A were observed, suggesting that PP2A inhibition is at least partly responsible for the hyperphosphorylation of tau at multiple sites following 30 min of propofol exposure. We also examined tau phosphorylation in SH-SY5Y cells transfected to overexpress human tau. A 1 h exposure to a clinically relevant concentration of propofol in vitro was also associated with tau hyperphosphorylation. These findings suggest that propofol increases tau phosphorylation both in vivo and in vitro under normothermic conditions, and further studies are warranted to determine the impact of this anesthetic on the acceleration of neurofibrillary pathology
Face mask integrated with flexible and wearable manganite oxide respiration sensor
Face masks are key personal protective equipment for reducing exposure to viruses and other environmental hazards such as air pollution. Integrating flexible and wearable sensors into face masks can provide valuable insights into personal and public health. The advantages that a breath-monitoring face mask requires, including multi-functional sensing ability and continuous, long-term dynamic breathing process monitoring, have been underdeveloped to date. Here, we design an effective human breath monitoring face mask based on a flexible La0.7Sr0.3MnO3 (LSMO)/Mica respiration sensor. The sensor’s capabilities and systematic measurements are investigated under two application scenes, namely clinical monitoring mode and daily monitoring mode, to monitor, recognise, and analyse different human breath status, i.e., cough, normal breath, and deep breath. This sensing system exhibits super-stability and multi-modal capabilities in continuous and long-time monitoring of the human breath. We determine that during monitoring human breath, thermal diffusion in LSMO is responsible for the change of resistance in flexible LSMO/Mica sensor. Both simulated and experimental results demonstrate good discernibility of the flexible LSMO/Mica sensor operating at different breath status. Our work opens a route for the design of novel flexible and wearable electronic devices
- …